Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System

Xiaochen Yang, Hongwei Li, Svend Svendsen Civil Engineering, DTU xiay@byg.dtu.dk

DTU Civil Engineering Department of Civil Engineering

Content of the paper

- Background of legionella bacteria
- Regulations and polices in some European countries
- Comparisons among different treatments
- Potential solution for LTDH in Denmark

Background of Legionella

- Main infection route: through inhalation or aspiration of contaminated aerosols
- Common disease
 - Pontiac fever
 - Chronic lung disease
 - Immunodeficiency...

Table 1 Influence of temperature

Temperature	Existence of		
(°C)	Legionella		
>60	legionella can not		
200	survive		
	be sterilized		
55-00	gradually		
50-55	growth inhibited		
20 50	proliferation		
20-50	boost		
0-20	very few		

Regulations and Polices

Fig 1 Notification rate of community-acquired Legionnaires' disease, EU/EEA, 2011 (n=2 642)

Regulations and Polices

Table 2 minimum temperature regulations of some countries

country	temperature of cold water(°C)	temperature at the tap (°C)	DHW producing temperature (°C)	concentration to take activity (CFU/L)
Netherland	-	-	≥60	as soon as legionella is detected
Denmark	-	≥50	≥60	1000
Belgium	≤25	≥55	≥60	-
Germany (large system)	-	≥45	≥60	-
Finland	≤20	≥55	≥60-65	-
Sweden	-	≥50	≥60(in the tank)	-
France	-	≤50	≥60	-
Italy	-	45-48	≥60	-
Spain	≤20	≥50	≥55	-
United Kingdom	≤20	≥50	≥60	1000

DTU Civil Engineering, Technical University of Denmark

Treatments	Efficacy	Operation Points	Advantages	Disadvantages	Cost
	Term				
<u>Thermal method</u>					
Superheating	short term	Temperature should be lift to no less than 60oC; operating time depends on the temperature.	Good transient effect;easy to control	labor intensive;Little effect on biofilm; should be used with other methods	mainly for labor cost; €14100 for 380 water point

```
Advantages
                                                                             Disadvantages
   Treatments
                     Efficacy
                                 Operation Points
                                                                                                       Cost
                       Term
Chemical method
                                                                                                   investment +
                                                                               little effect on
                                                                                                 maintenance fee
                                high water quality and
                                  low PH value are
                                                      good long-term effect; contaminated system;
                                                                                                    (electrodes
   Ionization
                                                        able to minimize
                                                                             hard to maintain
                                required; electrodes
                                                                                                   replacement
                     long term
                                                                                                   ranging from
                                 should be changed
                                                         recolonization
                                                                                  precise
                                                                                                  $1500 to $4000
                                      regularly
                                                                               concentration
                                                                                                    every year)
                                                                                                   investment +
                                                                            pipe corrosion; hard
                                                                                                   maintenance
                                                                             to maintain same
                                     2-6mg/L for
                                                         provide residual
                                                                                                 fee(labor cost and
                                                                               concentration
                                continuous effect; 1-2
                                                        concentration for
                                                                                                     change of
    Chlorine
                     long term
                                                                              throughout the
                                 hours acting time is
                                                       whole system; good
                                                                                                 corrosion pipes);
                                                                               whole system;
                                      required
                                                         transient effect
                                                                                                  €28600 annual
                                                                             potential to cause
                                                                                                 cost for 380 water
                                                                                 carcinogen
                                                                                                       points
```

	n	Т	T	
	U	ł	U	
-			2	-
-	ě	_	ð	•

Treatments	Efficacy Term	Operation Points	Advantages	Disadvantages	Cost
<u>Chemical method</u>					
Chlorine dioxide	long term	0.5-0.8 ppm for continuous effect; should be produced on site; not suitable for high temperature	more effective than chlorine	chemical unstability; cause cross-linked polyethylene pipes damage	investment + management fee; €11640 for380 water points annually
ozone	short term	0.36 mg/L for inhibitation; should be produce on site	fast reaction; less required dosage (0.1 mg/l ozone has equivalent effect versus 1 mg/l chlorine)	fast decomposition; should be applied with other chemicals	more expensive than chlorine because on-site installation and dosage loss; €30- 40,000 per 1,000 beds for 0.5 mg/l of concentration

DTU Civil Engineering, Technical University of Denmark

Treatments	Efficacy Term	Operation Points	Advantages	Disadvantages	Cost
<u>Chemical method</u>					
UV light	short term	wavelength of 254 nm ultraviolet light; should be installed on site	good transient effect; easy installation; no chemical by-products; no contamination on water quality	no residual protection; little effect on contaminated system; requires high water quality	mainly for investment; \$50000 for 500- bed hospital
Photocatalysis	short term	wavelength of the ultraviolet should be no more than 385 nm	chemical stability; high effect; no toxic residual	very limit effective wavelength; no documents about long-term effect	investment + maintenance fee; could be economical because the potential to use sunlight

Treatments	Efficacy	Operation Points	Advantages	Disadvantages	Cost
	Term				
<u>Physical method</u>					
Water filter	long term	needs to be changed frequently	high efficacy	cost could be increased by frequent use of the filter	mainly for replacing the filter; much more expensive than other kinds

DHW Renovation Blueprint

Low temperature district heating at 65°C

• Existing buildings (with upgraded heat exchanger)

Low temperature district heating at 50C

Existing large buildings with sterilization of DHW system:

- temperature treatment
- chemical treatment
- UV treatment
- micro filtration
-

Low temperature district heating at 50C Renovated large buildings with DHW heating in each flat

Low temperature district heating at 50C

Small buildings with small volume of DHW system

•German Standard W551

the system is safe with temperature below 50 °C if the total volume of the DHW system excluding HEX is less than 3 L.

• Experience: small DHW system, no ciculation cools down to room temperature

THANK YOU $\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c_{\rho}} \frac{\partial^{2} T}{\partial x^{2}} \int_{a}^{b} \frac{\partial T}{\partial x^{2}} \int_{a}^{b} \frac{\partial e^{i\pi}}{\partial x^{2}} \int_{a}^{b} \frac{\partial e^{i\pi}}}{\partial x^{2}} \int_{a}^{b} \frac{\partial e^{i\pi}}}{\partial x^{2}} \int_{$

DTU Civil Engineering Department of Civil Engineering