Using Ultra-low temperature district the central or DHW production in single family house

-Comparisons of 5 different substations

Xiaochen Yang, xiay@byg.dtu.dk Hongwei Li Svend Svendsen Department of Civil Engineering, DTU

Plan of the PhD research

- Overview possible solutions for supply DHW without Legionella
 - ("Alternative solutions for inhibiting Legionella in domestic hot water systems based on lowtemperature district heating" accepted)
- Investigate specific technology can be used for realizing LTDH without Legionella risk
 - (Case studies of electric heat tracing system and flat station system)
- Comparisons and summarizations about available alternatives for supplying DHW without risk of Legionella with LTDH
 - Case study of comparing 5 substations with ULTDH supply,
- Comparisons and investigations on more general and comprehensive scope
- Hand in the thesis at the end of January 2016

Aim of the study

- Viability of using ULTDH for single family houses
- Evaluation for energy/ economy performance of different substations

Background

- Location: Bjerringbro, Denmark
- Heat source: excess industrial heat from local pump company
- Design supply temperature: 46°C
- 21 houses are supplied by ULTDH, and 5 were selected for measurements

#1 A Tank B Electric heater 1 Energy meter for substation 2 Sensor for energy meter 3 Thermostatic valve 4 Energy meter of DH **DH** District heating Α SH Space heating DHW domestic hot water DCW domestic cold water SH SH **Return Supply** DH **DCW** Supply-2 DΗ DHW Return___4_

- DHW stored in the tank
- ULTDH preheat the DHW
- Immersion heater heat up DHW further
- Meters in the substation installed on both sides

• #2

- DH water stored in the tank
- Immersion heater heat up the DH water
- Meters installed on both sides

#3

- Heat pump installed on the production side
- DH water was heat up by the heat pump
- Meters installed on the consumer side

4 #4

- Instantaneous DHW production
- In-line heater installed on the consumer side
- In-line heater for only kitchen use
- Meters installed on production side

#5

- Instantaneous DHW production
- In-line heater installed on the consumer side
- In-line heater for all DHW production
- Meters installed on production side

Integrated energy consumption for DHW production

Input substation Output

- Energy input= Q_{DH} + Q_{el}
- Energy output= E_{DHW} + E_{heat loss}
- Relative use of input energy:

$$-C_{dh} = Q_{DH} / E_{DHW}$$

$$-C_{el} = Q_{el} / E_{DHW}$$

Integrated energy consumption for DHW production

- Parameters and assumptions:
 - E_{DHW} is 2000 kWh/yr (meet the requirement of energy efficient building in 2020)
 - Heat loss rate of the tank:60W, for the heat pump unit:200W (product catalog)
 - Heat loss of the in-line heater was neglected
 - DH supply T 45oC, return T 15 oC, DCW 10 oC
 - Other operation T follows DS 439 and CEN16355
 DHW in the tank 60oC,

For comfort: 55oC for normal use, no less than 45oC

Results

• 1. Measurements of May

Results

• 2. Ideal case

		E _{hl} /E _{dhw}	$Q_{\rm el}/E_{\rm dhw}$	Q_{DH}/E_{dwh}	Reference Price	integrated price
	#1	26%	53%	73%	0.8	1.6
	#2	26%	51%	75 %	0.8	1.6
	#3	88%	68%	119 %	0.8	2.3
	#4	0%	6 %	94%	0.8	0.9
	#5	0%	33%	67 %	0.8	1.2

Results

• 3. Comparison

Collaboration with others

- With other PhDs
 - Integrated analysis about the 4DH application in the building sector (SH &DHW) with Dorte wp1.1
 - Full analysis of 4DH including consumer side and network with Rasmus wp2.1 and Dorte
- With industrial partners
 - Viborg DH company
 - Bjerringbro DH company
 - Danfoss

Plan for the abstract of 4DH conference 2016

 The influence of DHW and SH on the consumer side on the overall DH return temperature and possible improve methods