Review of Various Solutions for avoiding critical levels of Legionella Bacteria in Domestic Hot Water System Xiaochen Yang, Hongwei Li, Svend Svendsen Civil Engineering, DTU xiay@byg.dtu.dk **DTU Civil Engineering**Department of Civil Engineering ## **Content of the paper** - Background of legionella bacteria - Regulations and polices in some European countries - Comparisons among different treatments - Potential solution for LTDH in Denmark # **Background of Legionella** - Main infection route: through inhalation or aspiration of contaminated aerosols - Common disease - Pontiac fever - Chronic lung disease - Immunodeficiency... Table 1 Influence of temperature | Temperature (°C) | Existence of
Legionella | | | |------------------|----------------------------|--|--| | >60 | legionella can not | | | | >00 | survive | | | | FF 60 | be sterilized | | | | 55-60 | gradually | | | | 50-55 | growth inhibited | | | | 20 50 | proliferation | | | | 20-50 | boost | | | | 0-20 | very few | | | ### **Regulations and Polices** Fig 1 Notification rate of community-acquired Legionnaires' disease, EU/EEA, 2011 (n=2 642) # **Regulations and Polices** Table 2 minimum temperature regulations of some countries | country | temperature
of cold
water(°C) | temperature at the tap (°C) | DHW producing temperature (° C) | concentration
to take activity
(CFU/L) | |-------------------------------|-------------------------------------|-----------------------------|---------------------------------|--| | Netherland | - | - | ≥60 | as soon as
legionella is
detected | | Denmark | - | ≥50 | ≥60 | 1000 | | Belgium | ≤25 | ≥55 | ≥60 | - | | Germany (large system) | - | ≥45 | ≥60 | - | | Finland | ≤20 | ≥55 | ≥60-65 | - | | Sweden | - | ≥50 | ≥60(in the tank) | - | | France | - | ≤50 | ≥60 | - | | Italy | - | 45-48 | ≥60 | - | | Spain | ≤20 | ≥50 | ≥55 | - | | United
Kingdom | ≤20 | ≥50 | ≥60 | 1000 | | ĺ | Treatments | Efficacy | Operation Points | Advantages | Disadvantages | Cost | |---|-----------------------|------------|---|--|---|---| | | | Term | | | | | | | <u>Thermal method</u> | | | | | | | | Superheating | short term | Temperature should be lift to no less than 60oC; operating time depends on the temperature. | Good transient effect; easy to control | labor intensive;Little effect on biofilm; should be used with other methods | mainly for labor
cost; €14100 for
380 water point | | Treatments | Efficacy
Term | Operation Points | Advantages | Disadvantages | Cost | |------------------------|------------------|--|---|--|---| | <u>Chemical method</u> | | | | | | | Ionization | long term | high water quality and
low PH value are
required; electrodes
should be changed
regularly | good long-term effect;
able to minimize
recolonization | little effect on
contaminated system;
hard to maintain
precise
concentration | investment + maintenance fee (electrodes replacement ranging from \$1500 to \$4000 every year) | | Chlorine | long term | 2-6mg/L for
continuous effect; 1-2
hours acting time is
required | provide residual
concentration for
whole system; good
transient effect | pipe corrosion; hard
to maintain same
concentration
throughout the
whole system;
potential to cause
carcinogen | investment + maintenance fee(labor cost and change of corrosion pipes); €28600 annual cost for 380 water points | | Treatments | Efficacy
Term | Operation Points | Advantages | Disadvantages | Cost | |------------------|------------------|--|---|---|---| | Chemical method | | | | | | | Chlorine dioxide | long term | 0.5-0.8 ppm for continuous effect; should be produced on site; not suitable for high temperature | more effective than chlorine | chemical unstability;
cause cross-linked
polyethylene pipes
damage | investment + management fee; €11640 for380 water points annually | | ozone | short term | 0.36 mg/L for inhibitation; should be produce on site | fast reaction; less
required dosage (0.1
mg/l ozone has
equivalent effect
versus 1 mg/l chlorine) | fast decomposition;
should be applied
with other chemicals | more expensive than chlorine because on-site installation and dosage loss; €30- 40,000 per 1,000 beds for 0.5 mg/l of concentration | | Treatments | Efficacy
Term | Operation Points | Advantages | Disadvantages | Cost | |------------------------|------------------|--|--|---|---| | <u>Chemical method</u> | | | | | | | UV light | short term | wavelength of 254 nm
ultraviolet light;
should be installed on
site | good transient effect;
easy installation; no
chemical by-products;
no contamination on
water quality | no residual protection; little effect on contaminated system; requires high water quality | mainly for investment; \$50000 for 500-bed hospital | | Photocatalysis | short term | wavelength of the
ultraviolet should be
no more than 385 nm | chemical stability;
high effect; no toxic
residual | very limit effective
wavelength; no
documents about
long-term effect | investment + maintenance fee; could be economical because the potential to use sunlight | | Treatments | Efficacy | Operation Points | Advantages | Disadvantages | Cost | |------------------------|-----------|-----------------------------------|---------------|---|---| | | Term | | | | | | <u>Physical method</u> | | | | | | | Water filter | long term | needs to be changed
frequently | high efficacy | cost could be
increased by frequent
use of the filter | mainly for replacing the filter; much more expensive than other kinds | # **DHW Renovation Blueprint** #### Low temperature district heating at 65°C Existing buildings (with upgraded heat exchanger) #### Low temperature district heating at 50C Existing large buildings with sterilization of DHW system: - temperature treatment - chemical treatment - UV treatment - micro filtration • Low temperature district heating at 50C Renovated large buildings with DHW heating in each flat Low temperature district heating at 50C Small buildings with small volume of DHW system - German Standard W551 the system is safe with temperature below 50 °C if the total volume of the DHW system excluding HEX is less than 3 L. - Experience: small DHW system, no ciculation cools down to room temperature # THANK YOU! DTU Civil Engineering Department of Civil Engineering