4th Generation District Heating Systems 4GDH

Svend Svendsen
Technical University of Denmark

ss@byg.dtu.dk www.byg.dtu.dk http://www.4dh.dk

Technical University of Denmark

Presentation on 4GDH

- Relevance
- Concepts
- Technologies
- Demonstration
- Implementation plans

What is 4GDH?

- Low temperature
- Renewable heat supply to
- Low energy buildings by
- Use of warm water grid (district heating)

What was the 1, 2, 3th

First Generation (1880-1930):

Steam as heat carrier. Is today in use in e.g. Manhattan, Paris and partly in Copenhagen.

Second Generation (1930-1970):

Pressurised hot water as heat carrier with temperature above 100 C.

Can be found today in older parts of current water-based systems.

Third Generation (1970-present):

Used in replacements in Central and Eastern Europe and all extensions in China, Korea, Europe, USA and Canada.

Technical University of Denmark

Why 4GDH? Relevant in EU due to:

EU Policy on energy and buildings EPBD recast:

All new buildings in the EU as from December 2020 (2018 for public buildings) will have to be **nearly zero** energy buildings

the *nearly zero or very low amount of energy*required should to a very significant level be
covered by energy from local renewable source

Why 4GDH? Relevant in DK due to:

Danish Energy Plan *

- All buildings and electricity fossil free by 2035
- Transport and industry fossil free by 2050
- Based on:
- energy savings and
- renewable energy supply

http://www.ens.dk/Documents/Netboghandel%20-%20publikationer/2011/our future energy %20web.pdf

Technical University of Denmark

Why 4GDH? Relevant due to:

Overall optimization of energy system with Renewable energy for heating buildings

What are the best technologies?

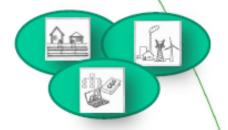
- RE-based District heating in cities
- RE-based Heat pumps outside cities

Why 4GDH? Relevant due to:

Optimization of fossil fuel free Energy system

What is the best combination of

- Efficiency
- Geothermal heat
- Biomass
- Wind
- Solar



4GDH - **How?**

Strategic Research Centre for 4th Generation District Heating Systems 2012 - 2017

The **Aim** is to assist in the development of 4th Generation District Heating Technologies and Systems (4GDH).

Objectives:

- Scientific platform for research activities
- Societal understanding of the role of District Heating
- Further additional national and international projects

4DH

4th Generation District Heating Technologies and Systems

Three pillars

Supply:

Low temperature District heating

Production:

Renewable Systems Integration

Organisation:

Planning and Implementation

13 PhD projects

Strategic Research Centre for 4th Generation District Heating Technologies and Systems

PhD 1.1. Heating of existing buildings by low-temperature district heating

PhD 1.2. Supply of domestic hot water at comfort temperatures without Legionella

PhD 1.3. Conversion of existing district heating grids to low-temperature operation and extension to new areas of buildings

PhD 1.4 Minimising losses in the DH distribution grid

Ph.D. 2.1: Energy Scenarios for Denmark

Ph.D. 2.2 Thermal storage in district heating systems

Ph.D. 2.3 Distributed CHP-plants optimized across more electricity markets

Ph.D. 2.4 Low-temperature energy sources for district heating

Ph.D. 2.5 The role of district heating in the Chinese energy system

PhD 3.1: Strategic energy planning in a municipal and legal perspective

PhD 3.2: Price regulation, tariff models and ownership as elements of strategic energy plants.

PhD 3.3: Geographical representations of heat demand, efficiency and supply

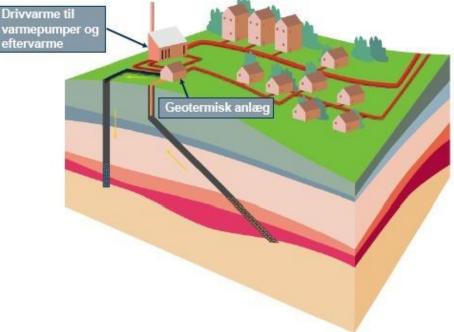
PhD 3.4: Geographical representations of renewable energy systems

Low temperature DH: Supply/return: 50C / 20C

Heat supply: No fossil fuels & no biomass fuels

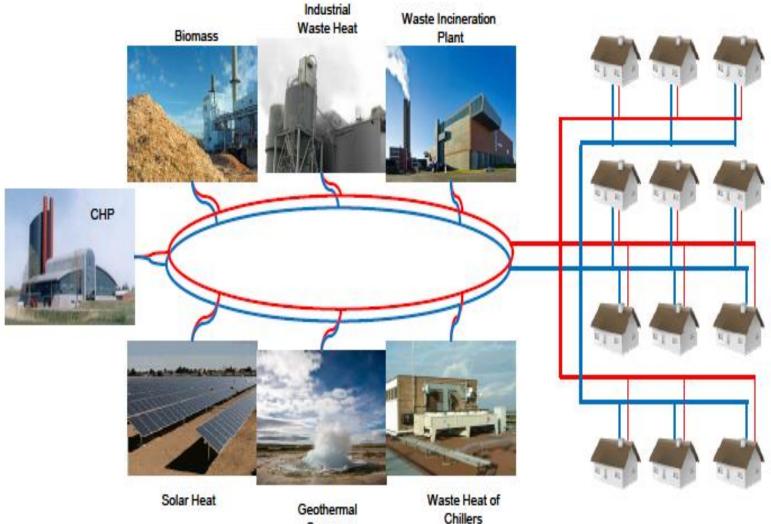
Low temperature district heating necessary because:

- more renewable heat produced at 50°C than at 80°C
- acceptable heat loss from grid (15%) for low-energy buildings



Technologies - Heat production

Fossil fuel based cogeneration replaced with Renewable energy



EFFICIENCY INCREASE OF EXISTING SOURCES NEW LOW TEMPERATURE HEAT SOURCES

Sources

Waste incineration

- Heat from waste in DK 67 %
- Producing 20% of district heating
- Producing 15% of all heat demand
- Less heat from waste in future for district heating

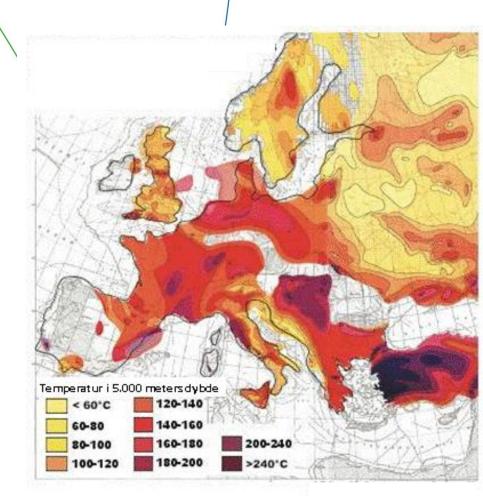
Biomass: Wood chips, pellets. Straw

- Major shift in DK from coal to biomass in cogeneration plants
- Import today but to be sustainable: local/production
- Not biomass enough
- More valuable for transport then for heat

Solar thermal plants with seasonal storage

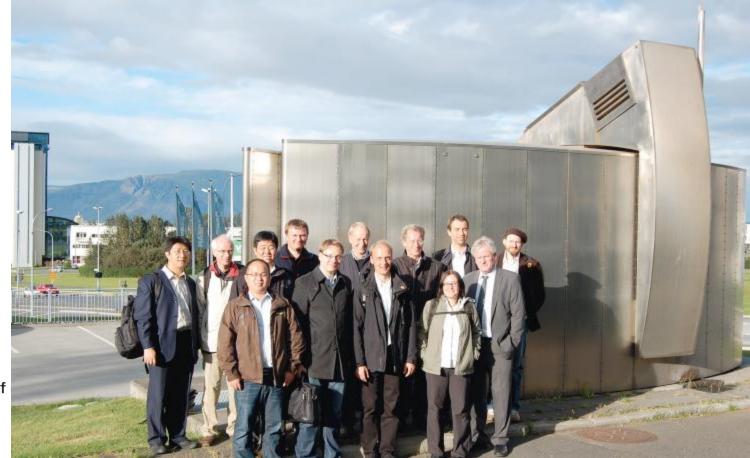
Example in Marstal:

1400 buildings, 33000 m² solar collectors, 75000 m³ storage 50% solar



Geothermal heating

- Boreholes 2-5 km
- Temperature 60-70 C
- Porosity + Water
- Big resources
- Big investments
- Heat prices similar to prices for heat today.



Technical University of Denmark

Geothermal heat: Pumping hut in Reykjavik Iceland

Technical University of

Distribution of heat in 4GDH

- Low temperatures:
- Supply at end user 50C
- Return at end user 20C
- Lower heat loss coefficient :
- Twinpipes with small diameter pipes (14mm) in service pipes

Figur 12 Tværsnit af det fremstillede prototyperør 14/14/110 mm

Distribution of heat in 4GDH

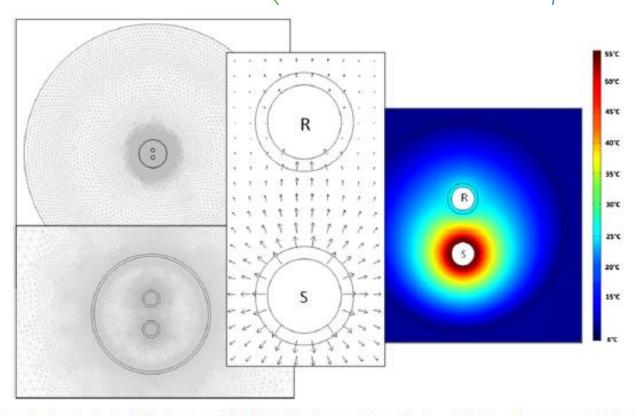


Fig. 5. Mesh model of a pre-insulated twin pipe buried in the ground (left). Heat flux between the media pipes (middle) and temperature field in Aluflex twin pipe 16-16/110 (right); temperature supply/return/ground: 55/25/8 °C.

Distribution of heat in 4GDH Heat loss of 3-6 W/m

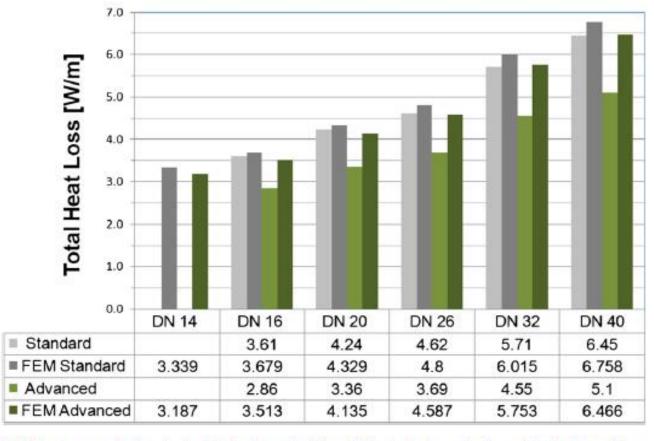


Fig. 9. Comparison of 4 different approaches for steady-state heat loss calculation. Aluflex twin pipe series 2, supply/return/ground temperatures: 55/25/8 °C.

Distribution of heat in 4GDH Central placing of supply pipe

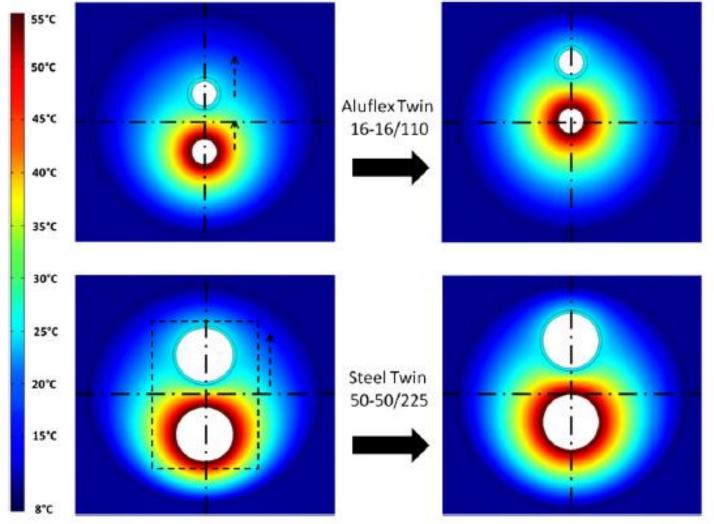


Fig. 10. Proposed modification in DH pipe design. Top: Aluflex Twin 16-16/110. Bottom: Steel Twin 50-50/225.

Distribution of heat in 4GDH Pipe sizes proportional to local flow

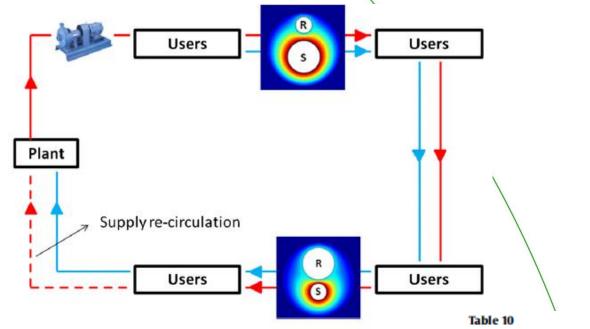
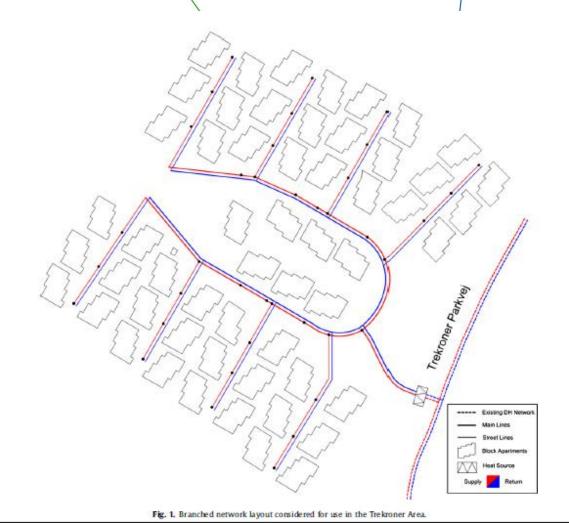


Fig. 11. Sketch of the possible application of the double pipe concept in a simple district heating network

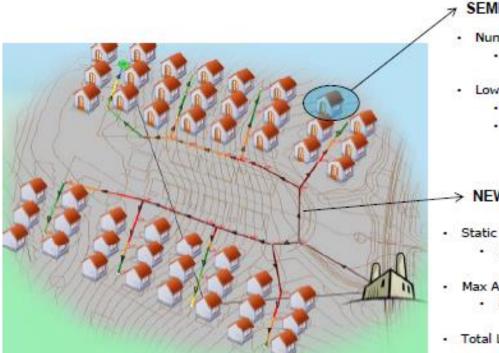
For info on products see:


http://www.logstor.com/

Left: comparison between a distribution network based on twin pipes (DN40-40 and DN80-80) with a distribution network based on double pipes (DN40-80 and DN80-40). Right: comparison between a distribution network based on twin pipes (DN100-100 and DN200-200) with a distribution network based on double pipes (DN100-100 and DN200-200) with a distribution network based on double pipes

(DN100-100 and DN200-200) with a distribution network based on double pipes (DN100-200 and DN200-100). Supply/return/ground temperature: 55/25/8 °C,

Size (DN)	Heat loss [W/m]			Total	[%]
	Supply	Return	Total		
40-40	-6.24	0.04	-6.20	Twin	6.1
80-80	-7.66	0.07	-7.59	-13.79	
40-80	-5,55	0.05	-5.58	Double	
80-40	-7.41	0.05	-7.36	-12.94	
100-100	-7.83	-0.55	-8.39	Twin	11.8
200-200	-8.92	0.24	-8.68	-17.06	
100-200	-6.4	0.08	-6.36	Double	
200-100	-8.07	-0.03	-8.69	-15.05	


Distribution of heat in 4GDH Grid layouts Grid layouts

Technologies and Systems

Distribution of heat in 4GDH Grid optimization Grid optimization 4E

TREKRONER LOW-ENERGY DH SYSTEM

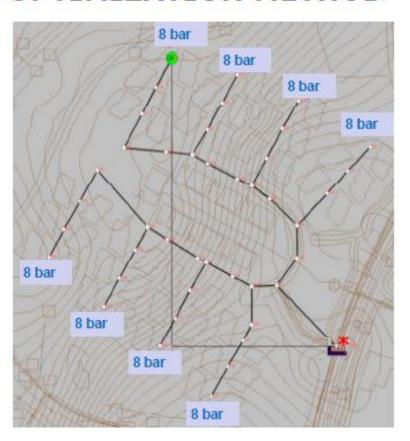
SEMI-DETACHED SINGLE FAMILY HOUSES

- Number of Houses
 - 165
- Low Energy House (Class I)
 - 3 kW Space Heating
 - 3 kW Domestic Hot Water (120 l buffer tank)

NEW LOW ENERGY DH SYSTEM

- Static Pressure
 - 10 bar

- Pipe Type (Class I)
 - AluFlex Twin Pipe
 - DN14 DN32
- Max Allowable Pressure Drop
 - 8 bar


- Steel Twin Pipe
- Total Length of Network
 - ~1 km

DN32 – DN80

Technologies and Systems

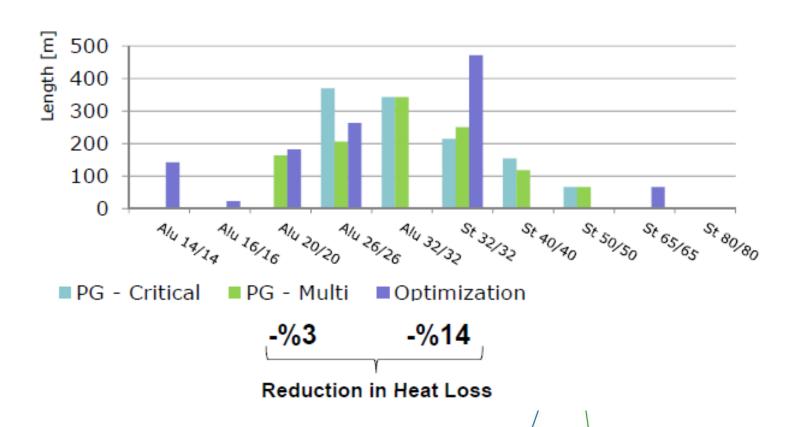
Distribution of heat in 4GDH Grid optimization

OPTIMIZATION METHOD

Nonlinear Constraint Function Optimization

Objective Function: Min Heat Loss from DH Network

Technologies and Systems


By Means of: Reducing Each Diameter

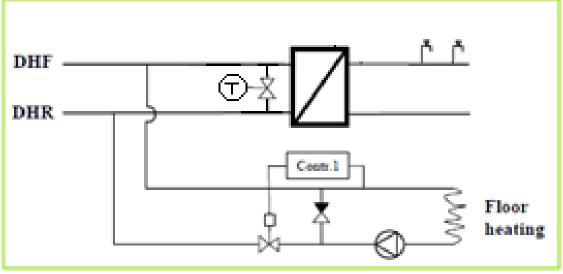
Constraint Functions: Max Allowable Pressure Loss in each Route (8 bar)

Distribution of heat in 4GDH Grid optimization

Technologies and Systems

COMPARISON OF LENGTH OF PIPE TYPES

Distribution of heat in 4GDH


Substations - Heat exchanger for DHW

4DH
4th Generation District Heating Technologies and Systems

High efficiency –

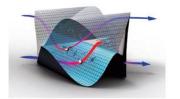
Supply temp. district heating: 50 C

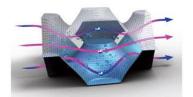
DHW: 45 C

Distribution of heat in 4GDH

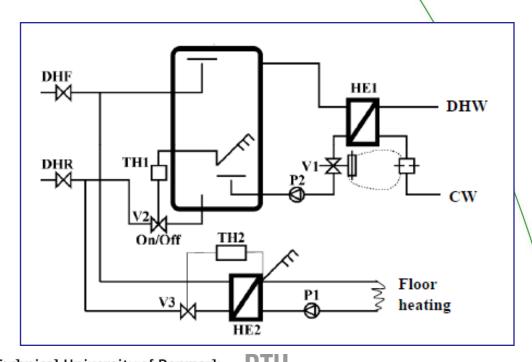
4th Generation District Heating Technologies and Systems

- Micro Plate Heat Exchanger from Danfoss (right)
- Heat exchanger for DHW: 33kW 52/20 -10/45
- Temperature differences of 5 C
- www.mphe.danfoss.com



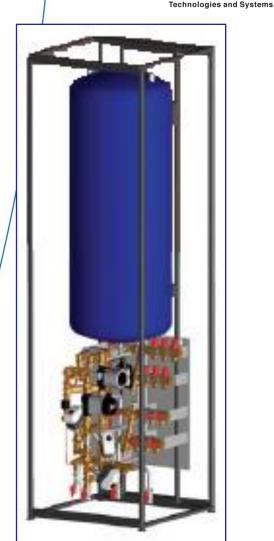


Micro Plate Heat Exchangers have a broad, flat brazing surface which adds stability to the construction.



Distribution of heat in 4GDH —

Substations – buffertank


4DH
4th Generation District Heating

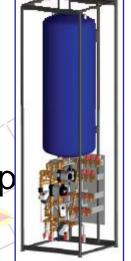
Reduce peak load from DHW in DH

Technical University of Denmark

Distribution of heat in 4GDH – DHW in large buildings with circulation Thermal or UV /oxidation disinfection Danfoss ThermoClean or Wallenius

Wallenius AOT 5 duo with sensor

Demonstration EUDP - projects



- 2001-2004: EFP-2001: District heating supply to low-energy areas
- 2006-2009: EFP-2007: Development and demonstration of lowenergy district heating for low energy buildings
- 2008-2011: EUDP 2008-II: CO₂ reductions in low-energy buildings and communities by implementation of low-temperature district heating systems. Demonstration cases in EnergyFlexHouse and Boligforeningen Ringgården
- 2011-2014 (expected completion): EUDP 2010-II: Full-scale demonstration of the future low-temperature district heating in existing settlements. The project is ongoing.
- 2011 2014 (expected completion): EUDP Heat Pumps in District Heating (HPinDH)

Demonstration in new LEbuildings - Lystrup [1,2] - EFP/EUDP projects (2007, 2008, 2010)

- 40 row-houses class 1 (BR08) 37 kWh/m²-yr
- DH design parameters: 50/25°C, 10 bar
- District heating network
 - AluFlex Twin pipes (insulation series 2)
 - reduced pipe sizes -> higher pressure drop
 - annual distribution heat loss approx. 15%
- Development of two in-house substations concep
 - no problem with Legionella and comfort
- System runs already 2 years, no complaints

Demonstration of 4GDH In new LE-buildings- Lystrup

11 IHEU's

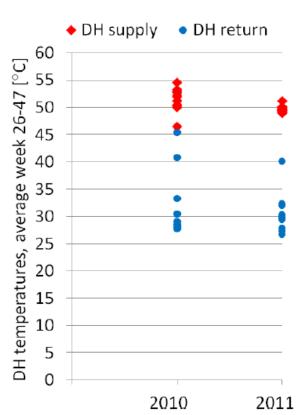


Table 5: Investment costs

	Costs	(2010)	
Item	[€/m]	[€/unit]	Total [€]
Pipes*	120		65,000
Pipe fittings*	32		17,000
Pipe laying**	131		100,500
DHSU substation*		3,700	41,000
IHEU substation*		2,600	78,000
Substation installation**		1,000	41,000
Pump + frequency controller*		2,400+2,000	4,400
Total Cost			346,900

Casta (2010)

Figure 9: Supply and return temperatures for 11 IHEU's average of week 26-47, 2010/2011.

Cost per house

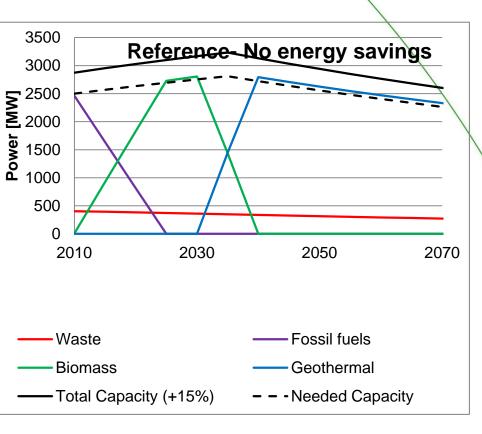
8,460

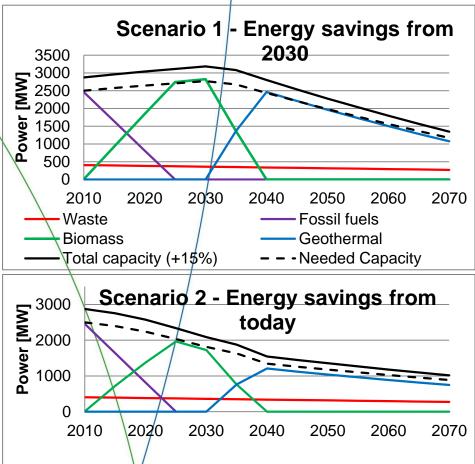
Demonstration of 4GDH In existing buildings

- 4DH
- How much we can reduce the supply temperature ! Technologies and System:
- Which renovation measures (if any) should be performed?
- Simulation of typical single-family house from 70s.
 - radiators originally designed 70/40/20
 - influence of windows renovation

Case	windows properties	Energy demand for SH [MWh/year]	Peak power for SH [kW]	Supply temperature needed in radiators for:		
				Tout=-21°C	Tout=0°C HIGH	Tout=0°C LOW
no renovation	U-value: 2,5 W/m ² K g-value: 0,43	10 .49	5,8	65/43/20	60/29/20	50/34/20
new glazing	U- value: 1,4 W/m ² K g- value: 0,43	8.3	5,0	65/35/20	60/26/20	50/29/20
new windows	U- value: 0,9 W/m2K g- value: 0,35	7.55	4,5	65/32/20	52/25/20	50/26/20

Demonstration of 4GDH In existing buildings 75 houses i DK gets low temperature DH to reduce loss from grid


Implementation plans Example: Pre study on energy renovation of buildings and 4GDH in Copenhagen 3 Scenarios

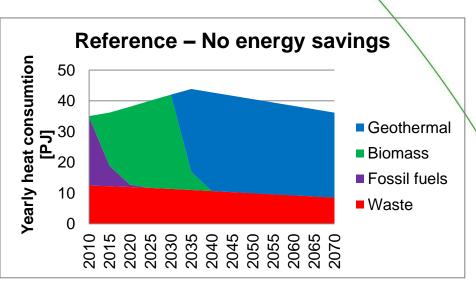

- All scenarios contain a natural replacement on 1% of the existing building mass with newly constructed buildings.
- Reference scenario No heat savings
 - Represents the extreme case where nothing is done. Supply for the full unchanged heat demand.
- Scenario 1 Accelerated energy renovation from 2030-2070 (65 %)
 - Nothing is done in the near future due to low DH-supply prices.
 Investment in new capacity will increase the supply price and as a consequence heat savings are carried out.
- Scenario 2 Accelerating energy renovations from today (65%)
 - Heat savings are implemented from today, resulting in decreased heat demand before investment in new capacity.

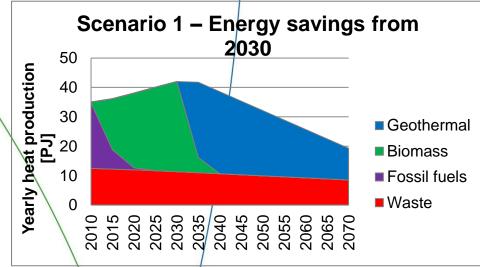
Capacity - Peak loads

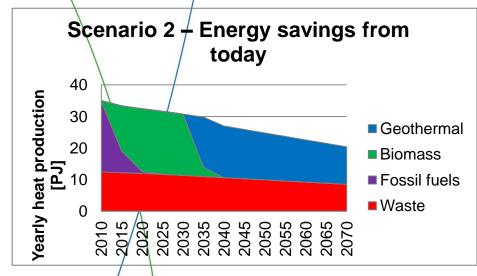
Technical University of Denmark

Waste

Biomass


Total capacity (+15%)


Fossil fuels


Geothermal

Needed Capacity

Yearly heat production 2010 - 2070

Technical University of Denmark

Costs

		Reference	Scenarie 1	Scenarie 2
Geothermal				
Capacity	[MW]	2793	2464	1207
Capital investment	[mil €]	7498	6614	3241
DH-system				
Total DH -production in 60 years	[PJ]	2379	2114	1656
Geothermal production in 40 years	[PJ]	1110	838	543
Total costs for DH	[mil €]	12162	10521	6227
Renovation PJ saved by energy renovating				
(65%)	[PJ]	-	265	723
Cost for energy renovation	[mil €]		2205	6021
Total cost for each scenario	[Bil €]	26	29	25
			1	/

Investment -50% If energy savings are carried out now

Total costs are similar due to energy renovation is costly

Technical University of Denmark

Scanaria 1 Scanaria 2

Implementation plans - conclusions

Detailed investigations needed

- Based on new 4GDH technologies
- Based on an optimised energy system
 - Fossil free
 - No imported biomass for fuels

Optimal solutions Political implementation needed

