

Heat Roadmap China

 New heat strategy to reduce energy consumption towards 2030

Weiming Xiong
Phd. Candidate, Tsinghua University, Beijing

Supervisor:

Xiliang Zhang (Tsinghua University)
Brian Vad Mathiesen (Aalborg University)
Henrik Lund (Aalborg University)

2014.08.18

Outlines

- → Overview of China's heat sector
- → Methodology
- → Modelling the Reference scenario
- Designing the Heat Roadmap China
- → Results and Discussion
- → Conclusion and Future Plan

→ Coal-dependent energy system

→Increasing primary energy consumption for building heating in heavy-coal mix

→ District heating covers most of China's northern cities but is refused by law in southern cities

→ Rapid growth of district heating but still dominated and "locked" by coal boiler

Share of heat production for different technologies in District heating in 2010

→ Energy is wasted mostly in coal boilers and individual coal stoves

Research question

- → Disorganized heat strategies due to institutional structure with significant autonomy
- → How does China supply her heating system towards 2030 (inflection point of urbanization)?

Existing studies indicate...

- → Focus on improving construction codes for buildings, rather than the fundamental issues in district heating system
- District heating and CHP are considered as key solutions but, are merely mentioned, without detailed analysis
- →Our goal: Quantitative analysis of energy supply, system cost and emissions, for improved heat strategies

Methodology

→ Replication of heat strategies in energy system modelling tool EnergyPLAN

Methodology

→ Comparison of different heat strategies

Methodology

Modelling the Reference scenario

➡ Energy consumption is expected to keep increasing towards 2030 (projections of entire energy system from IEA, technology mix consistent in heat sector with 2010 figures)

Modelling the Reference scenario

➡ Energy loss is mainly caused by coal boilers, in reference to the heat strategy...

Designing China's Heat Roadmap

- → Implement Individual heat expansion strategy, whilst maintaining consumptions levels:
 - → Replacement of coal stove
 - → Keep existing district heating grid
 - → Expansion of electric heater and household gas boiler

Electric radiator

Gas heater

Air conditioner

Designing China's Heat Roadmap

- → District heating expansion strategy, with a goal to reduce coal boilers:
 - → Energy saving for end users
 - Utilization of surplus heat resources
 - Cleaner heat suppliers than those of coal boilers

Excess heat is wasted in coal-fired power plants

- Potential for industrial heat recovery
 - → Low energy efficiency in current factories
 - → Close to highly-populated areas

Energy consumption per Unit productions

- → High heat loss due to unchangeable system
 - → Heating bill calculated by building area including unit service, construction and energy consumption
 - → No devices to change indoor temperature
 - → 20% heat loss due to "open-window"

- → Three steps to create a new heat strategy (Heat Roadmap China):
 - →Implementation of heat metering devices (energy saving)
 - →Industrial excess heat utilization (waste recovery)
 - → Replacement of coal-boilers, increase of CHP (replacement, more CHP)

Primary supply for entire energy system

Primary supply for building heating sector

→ Annual cost for the entire energy system

→ Annual cost for the building heating sector

- →Individual heat consumes more energy with a higher system cost
- → District heating is an attractive solution, while the new heat strategy is cheaper and more energy-saving than the current strategy

→Improvements on the demand side and supply side are needed

Conclusions

- → HRC(Heat Roadmap China) is more attractive than REF(reference scenario)
 - → Reduces the primary energy supply (~60% for building heating sector and ~3% for entire energy system)
 - → Reduces the 3% ~ CO2 emissions
 - → Reduces the costs of the energy system (~15% for building heating sector)

 - → Robust to fuel price uncertainty (20% fuel price uncertainty ~10% system cost uncertainty)

Conclusions

- Other benefits of HRC strategy:
 - → Ensures energy security (Individual heat replies on natural gas and oil)
 - → Decreases air pollution during heating period

→ Provides opportunity to improve the interaction between electricity sector and heat sector

Thank you

Tsinghua University

Brian Vad Mathiesen

AALBORG UNIVERSITY DENMARK

Weiming Xiong

Aalborg University

Yu Wang

Henrik Lund

Xiliang Zhang

David Connolly