
2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

TECHNO-ECONOMIC ASSESSMENT OF LATENT THERMAL ENERGY STORAGE INTEGRATION WITH LOW-TEMPERATURE DISTRICT HEATING

Alberto ROSSI-ESPAGNET¹, **José F. CASTRO FLORES^{1,2}** (presenter) Justin NW. CHIU¹, Viktoria MARTIN¹, Bruno LACARRIÈRE²

esenter)

¹ KTH – Royal Institute of Technology, Department of Energy Technology, Stockholm, Sweden

² EMN – École des Mines de Nantes, Department of Energy Systems and Environmental Engineering, Nantes, France

4th Generation District Heating Technologies and Systems

AALBORG UNIVERSITY DENMARK

Background / Introduction

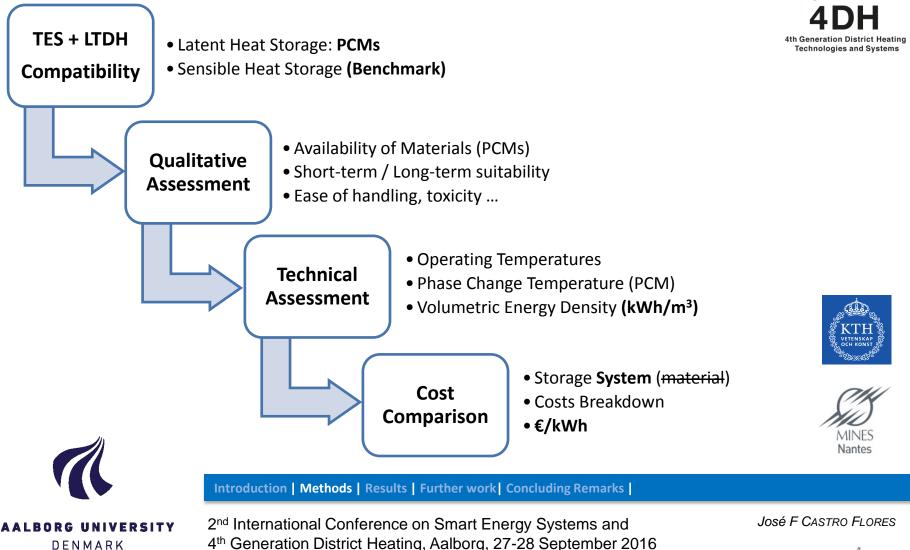
- Heading for a Smart Energy System:
 - Benefits: energy efficiency, economics, environment
 - Requirements: **flexibility**, demand/supply matching, ...
- Opportunity for Thermal Energy Storage (TES)
 - Enhance benefits when integrated to 4DH
 - Sensible heat storage dominant (water)
 - Typical use: load shifting, lower heat production costs
- TES operating at lower temperatures
 - T_{low} 25°C , T_{high} 50-65°C
 - Advantages / drawbacks (?)

Introduction | Methods | Results | Further work | Concluding Remarks |

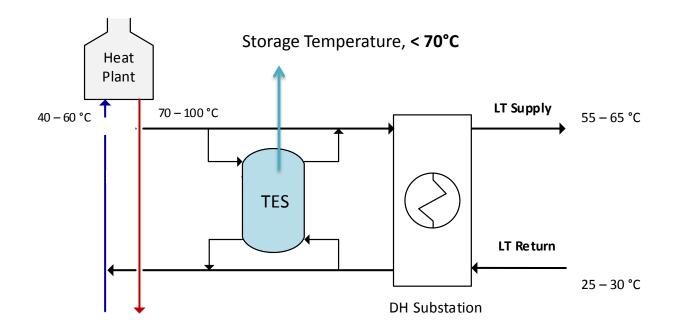
2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Objectives and Scope

- Focus on Latent Heat TES (PCM)
 - Comparison to Sensible TES (Water) as baseline
 - Short-term storage
- Comparative assessment (techno-economic)
 TES System (rather than the material)
- Identify suitable LH-TES for LTDH
 - Types with most favourable conditions
 - Explore TES integration at the substation/subnet level

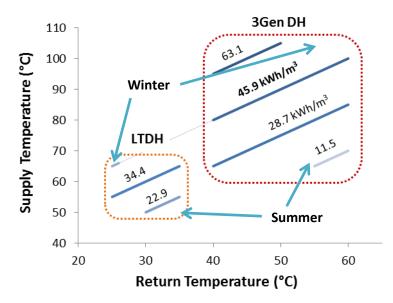

Introduction | Methods | Results | Further work | Concluding Remarks |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016



Methodology

System: LTDH + TES



2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Introduction | Methods | Results | Further work | Concluding Remarks |

Technical Evaluation

Sensible Heat (water)

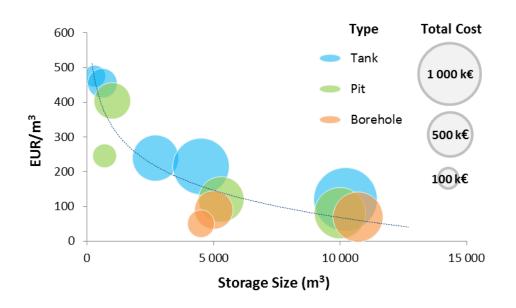
• Volumetric capacity depends on the operating temperature ranges (Delta T)

Volumetric capacity:

- Sensible heat TES systems, lower volumetric capacity when LTDH operation is in place
- Latent TES systems present an advantage: less sensible to Delta T
- Example: a paraffin PCM operating with LTDH, Volumetric capacity range
 - min: 52 kWh/m³
 - max: 64 kWh/m³

KTH VETENSKAP OCH KONST

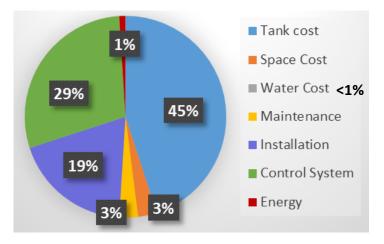
Minimum charging temperature 50-55°C (supply, above PC temperature)



Introduction | Methods | Results | Further work | Concluding Remarks |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

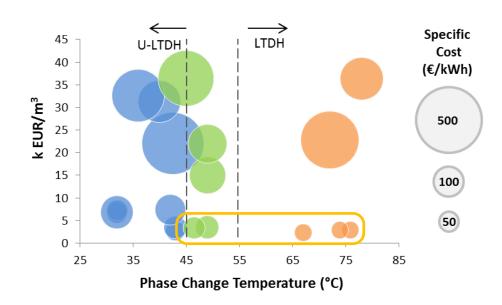
Costs SH-TES



Sensible Heat (Water) Systems

Specific cost range: 0.5 - 8 EUR/kWh

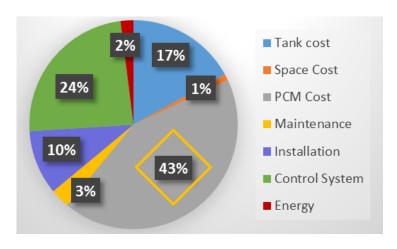
Waster Tank System (average)



Introduction | Methods | Results | Further work | Concluding Remarks |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Costs LH-TES


PCM Systems

Materials: Paraffins, Fatty Acids, Salt Hydrates, Metallics

Specific cost: >30 EUR/kWh

PCM System (average)

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Introduction | Methods | Results | Further work | Concluding Remarks |

Ongoing Work

- Impact of TES for suppliers and LTDH customers
 - Supply of heat with lower marginal costs, same network
 - Load shifting (short term)
- Impact of TES + LTDH in the main network
 - Differences in pumping power on the primary side
 - Reduction (?) of T_{return} due to charge/discharge process

Introduction | Methods | Results | Further work | Concluding Remarks |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Conclusions

- Sensible TES (water) is more economical than Latent TES
 - The storage material itself is the main difference
 - Costs of LH-TES systems are expected to drop in the future
- Latent TES for small scale (short term) applications with LTDH will become competitively closer to water tanks
 - Lower DeltaT (for LTDH) and space restrictions are the main drivers
 - For large scale and seasonal storage applications water is superior
- Current best case for Latent Heat TES systems:
 - cost per kWh stored is still at least 2 times higher than for a water tank
 - requires half of the volume in average

DENMARK

UNIVERSITY

Introduction | Methods | Results | Further work | Concluding Remarks |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Introduction | Methods | Results | Discussion | Concluding Remarks | Questions

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

TECHNO-ECONOMIC ASSESSMENT OF THERMAL ENERGY STORAGE INTEGRATION INTO LOW-TEMPERATURE DISTRICT HEATING

Supporting Slides

MINES Nantes

Supporting Slides | Title |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

José F CASTRO FLORES

Qualitative Assessment PCMs

A	Metallics	Used in high working temperature application (such aerospace) Very high heat of fusion per unit volume Weight penalties uction Methods Results Further work Concluding Remarks	MINES Nantes
Latent Heat Storage		Inorganic compounds	(11H
	Salt Hydrates	Inorganic compounds Wide PCT, low volume change High latent heat of fusion and higher thermal conductivity (double of paraffins) Slightly toxic, corrosive, non-flammable Face problems of incongruent melting and super-cooling	KTH VETENSKAP
	Fatty Acids	Organic compounds Wide phase change temperature range Low thermal conductivity and low volumetric storage density (compare compounds) Mild corrosive Behavior similar to other organic compounds for the remaining properties	d to inorganic
	Paraffins	Organic compounds Use of technical grade paraffin for cost reasons Chemically stable, non-corrosive and no subcooling phenomenon Wide phase change temperature (PCT) range Low volume variation when changing phase (10%) Low thermal conductivity and low volumetric storage density (compare compounds)	4DH th Generation District Heating Technologies and Systems d to inorganic

AALBORG UNIVERSITY DENMARK 2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Methods: Costs Breakdown

Main cost items:

- Storage medium (material)
- System purchase cost (e.g. tank)
- Other fixed costs (insulation, piping)
- Control system
- Installation (incl. labour)
- Operation and Maintenance (O&M)
- Replacement

*Special attention to influence of system size (scale)

Introduction | Methods | Results | Further work | Concluding Remarks |

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

