

2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Comparison of two methods for finding Least Cost Solutions for Heat Saving and Heat Supply in Buildings

Presenter: Richard Büchele

27.09.2016

Contents

- (1) Motivation and aim of the work
- (2) Technical description of the two methods
- (3) Case study for the city of Brasov (Romania)
- (4) Conclusions and Discussion

Motivation and aim of work

Motivation and Aim

- Emission reduction target of the EU
- Big potential for energy saving in the building stock in order to decrease CO₂ emissions
- Find cost optimal combinations of heat savings (renovation measures) and heat supply (DH or individual supply technologies) for space heating and preparation of hot water in the building stock
- Compare two different approaches which have the same objective

Technical description of the two methods

Introduction to cost curves

Method 2

1) Calculation of heat saving costs for all saving options (renovation combined with change in heating system) for a building

4) calculation of step 1-3 for all buildings in the stock + ordering from lowest to highest costs

Overview of differences between the methods

	Method 1	Method 2
Methodological differences		
Energy indicator	Useful energy demand	Final energy demand
Cost indicator	Separate calculation for saving and supply	Costs for combination of saving measure and supply technology
Differences in implementation		
District heating	Distinction between district heating areas, next to district heating areas and individual areas	Distinction between district heating areas and no district heating areas
Representation of building stock	10 building categories, 3 building classes, 5 supply technologies	10 building categories, X building classes, Y supply technologies

Case study for the city of Brasov

Short introduction to city of Brasov (Romania)

- Old district heating system
 - Old coal CHP replaced by new CHP gas engines (2010-2012)
 - A lot of costumers disconnected from DH
 - Very high network losses (>50%)
 - →high reinvestment costs
- Currently
 94% individual gas boiler,
 5% DH,
 - 1% individual biomass

Exemplary results method 1 – private economic calculation

depreciation time:

15 y for supply technologies20 y for renovation measures

Results

Around 60% savings of energy demand for all buildings

DH is not competititve

- High reinvestments
- Low gas price for privates

Smaller individual buildings change to biomass boilers, bigger buildings to gas boilers

Heat pumps depend on electricity price assumptions and COP

Preliminary Results method 2 – private economic calculation

depreciation time:

15 y for supply technologies20 y for renovation measures

Results

saving of 40 – 80% of useful energy demand for all buildings

change to heat pumps (a/a and w/w) as well as to gas boilers

unrenovated old buildings lead to the cheapest savings

a higher interest rate leads to less ambitious saving as cost minimal solution

Conclusions and Discussion

Conclusions

- Important influencing factors on the resulting technology and savings combinations:
 - price sensitivity of district heat to the supplied heat demand (and the technologies used for supply of district heat)
 - rebound effect in the buildings after renovation
 - Overestimation of heat savings
 - Assumptions on building stock
 - socio- vs. private-economic conditions (interest rates, depreciation times, taxes, subsidies)
- Both methods provide important insights
 - Method 1: better suited for visualisation of combinations in single buildings
 - Method 2: better suited for visualisation of overall savings potential and resulting costs

>

16

Discussion / open issues

Open Issues:

- > Show more results of each implementation:
 - CO₂ emissions (reduction)
 - Compare results per building class
- Verification of input data
- Sensitivity analysis still to be conducted for both methods to get more reliable results