
Optimal heat sources for cooling buildings using absorption chiller technology

DENMARK

Sebastian Bykuć, Marta Kierek, Anders N. Andersen,

Poul Alberg Østergaard, Katarzyna Bogucka-Bykuć

Optimal heat sources for cooling buildings using absorption chiller technology

<u>Sebastian Bykuć</u>, Marta Kierek, Anders N. Andersen,

Poul Alberg Østergaard, Katarzyna Bogucka-Bykuć

Twinning for a **Su**stainable, **P**roactive **R**esearch partnership in distributed **E**nergy systems planning, **M**odelling and manag**E**ment

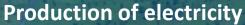
This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement N° 692197

4th Generation District Heating Technologies and Systems

Optimal heat sources for cooling buildings using absorption chiller technology

KEZO Centre- Test-side for devices producing and storing heat, cold and electricity from RES as well as test side of software for management of generation and consumption of energy

-Demonstrators of modern technologies (majority of them is not yet available at the Polish market)
- research object (metering, data acquisition and analysis, control)
- functional systems supplying building of the Center in heat, cold and electricity





Photovoltaics:

- monocrystalline cells
- policrystalline cells
- PVT panels
- thin-film cells
- transparent panels
- Tracker, sheds, BIPV

Heat Production

Heat pumps: - ground- source hightemperature with CO₂ - air-source

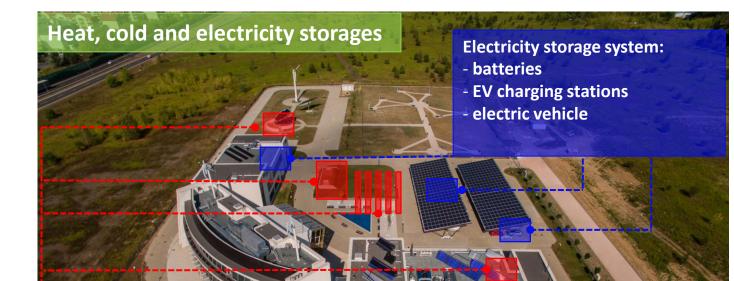
 absorption heat pump air/water supplied with gas Solar collectors: - vacuum-tube "heat pipe" type - direct- flow type Boilers: - biomass-fired - gas th Generation District Heating Technologies and Systems

Gas systems:

- fuel cell
- **Stirling engines**
- ignition engines
- gas microturbine
- -100kWe/165kWt

DENMARK

Biomass systems: - biomass gasifier with CHP unit coupled with ignition engine 30kWe/80kt - CHP unit coupled with pellet-fired Stirling engine


Cold Production

Heat pumps: - ground- source hightemperature with CO₂ - absorption heat pump air/water supplied with gas Waste heat utilizing systems: - Absorption chillers utilising heat from solar collectors and waste heat from testing rigs

Heat storages (experimental): - high and low temperature accumulation tank 2x 5m³ - TTES (Tank Thermal Energy Storage 50m³) - BTES (Borehole Thermal Energy Storage) - LHTES (Latent Heat Thermal Energy Storage

Cold storage: - Ice water accumulation tank 5m³

utilising PCM 2x1 m³⁾

Building of a Centre is **the space for work**, but also **the living laboratory**.

We utilize all the locally available sources of RES:

- Sun
- Wind
- Geothermal energy
- Biomass

We utilize waste heat:

- production of electric power
- production of cold

We store heat, cold and electricity:

- BTES
- TTES
- LHTES (with PCM)
- batteries of accumulators

We support development of ecological transport:

- EV charging station
- e-vehicle

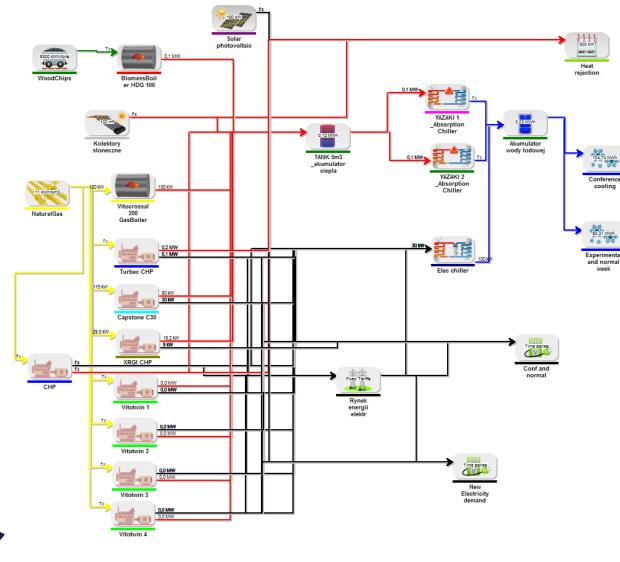
We monitor and manage production and consumption of energy in Centre

- Expanded BMS : a local micro "Smart Energy System" in the future

Cooling options analysis:

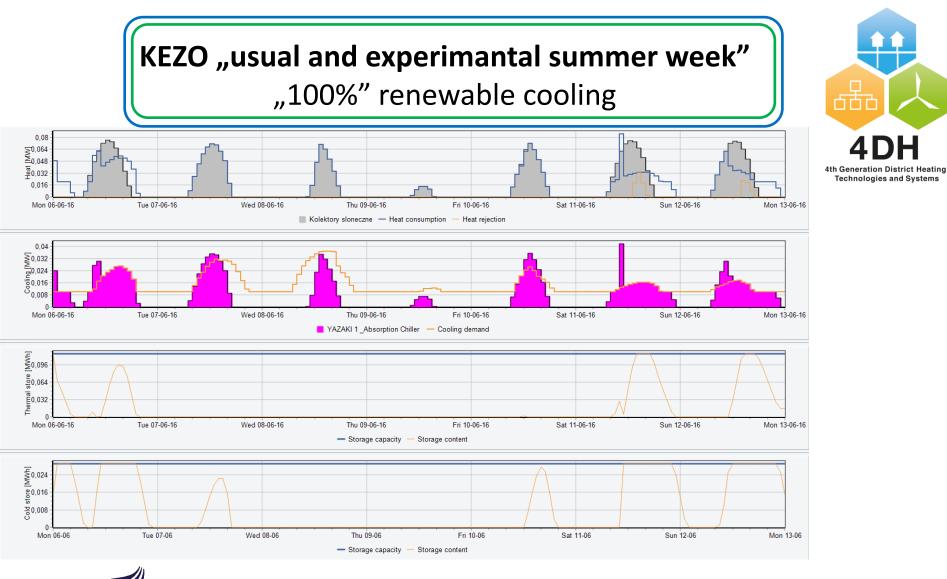
- Technologies available onsite:
 - Absorption chillers: 100-140kW cooling power
 - Evacuated tube Solar collectors 120m²
 - Storage: 5m³ heat, 5m³ cold
 - PV: 160kWe
 - Gas boiler 100kWh
 - Biomas boiler 100kWh
 - CHP
 - 4x 1kWe, 20kWh Stirling
 - 9kWe, 19kWh gas engine
 - 100kWe, 165kWh gas turbine
 - 30kWe, 90kWh gas turbine

Cooling options analysis:


- Questions:
 - How to cool the building in different situations?
 - Is there an optimum mix of technologies?
 - Which one is the cheapest to operate?
 - New investments needed?

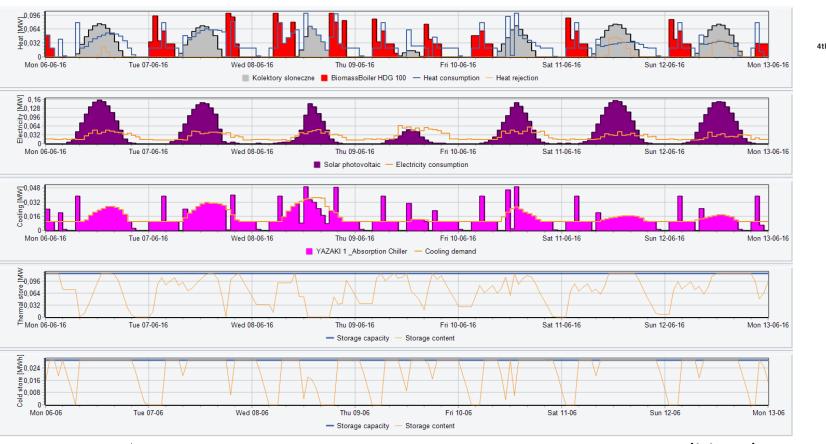
3 scenarios -3 sets of demands ſЃЃГ **KEZO** "conference **KEZO** "experiment **KEZO** "usual summer week" summer week" summer week" 4th Generation District Heating Technologies and Systems SINCE 3:1985 NEWSE 1,856 ROFE TAGES NoX356 **LISE** FIDER 101561 16666 1:156 100864 1856 6068 \$1156 Sa NGE Var DISE ALC: NO DG61 SINCE 316465 **F 1656 WEAKS** WEXS N6¥6 1156 Sir 1938 AND USE 1683 21143 Set 33E DOM \$118.5 W 23 Val 1656 1:045 1,836 FIDEE SHEEF 5=13636

EnergyPRO model


AALBORG UNIVERSITY Denmark

EnergyPRO analysis

- 27 options analysed
- 9 selected combinations of available technologies
- 6 with additional investments



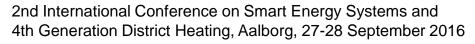
Cooling demand not met

KEZO "usual summer week" Mix Solar Collectors+Biomass boiler+PV

Aditional Investment: "0" Operation cost: 517PLN

KEZO "usual summer week" Mix Solar Collectors+Gas boiler+PV

Operation cost: 798PLN


KEZO "usual summer week" Mix Solar Collectors+CHP+PV _0,096 ≧0,064 <u></u> 0,032 4th Generation District Heating **Technologies and Systems** Mon 06-06-16 Tue 07-06-16 Wed 08-06-16 Thu 09-06-16 Fri 10-06-16 Sat 11-06-16 Sun 12-06-16 Mon 13-06-16 Kolektory sloneczne CHP — Heat consumption — Heat rejection ₹ 0,16 ₹0,128 Atio,096 Mon 06-06-16 Tue 07-06-16 Wed 08-06-16 Thu 09-06-16 Fri 10-06-16 Sat 11-06-16 Sun 12-06-16 Mon 13-06-16 Solar photovoltaic CHP — Electricity consumption ≥0,048 ₹<u>0,032</u> 10,016 Wed 08-06-16 Fri 10-06-16 Sun 12-06-16 Mon 06-06-16 Tue 07-06-16 Thu 09-06-16 Sat 11-06-16 Mon 13-06-16 YAZAKI 1 Absorption Chiller - Cooling demand ₹ 0.096 E0,064 20,032 ⊨ Mon 06-06-16 Tue 07-06-16 Wed 08-06-16 Thu 09-06-16 Fri 10-06-16 Sat 11-06-16 Sun 12-06-16 Mon 13-06-16 - Storage capacity - Storage content ₩ 0,024 ≌0,016 800,0³ 0 Mon 06-06 Tue 07-06 Wed 08-06 Thu 09-06 Fri 10-06 Sat 11-06 Sun 12-06 Mon 13-06 - Storage capacity Storage content

AALBORG UNIVERSITY

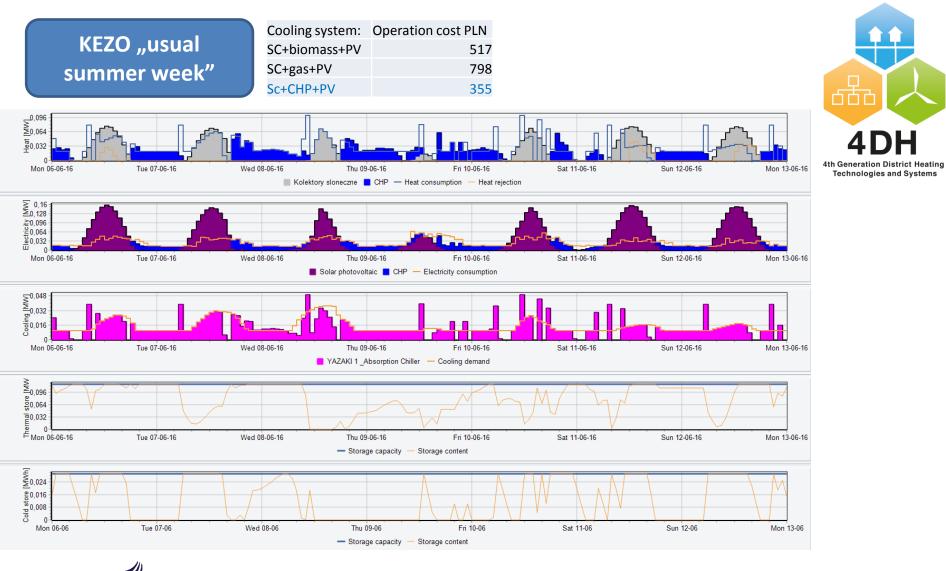
DENMARK

Aditional Investment: "0" Operation cost: 355PLN

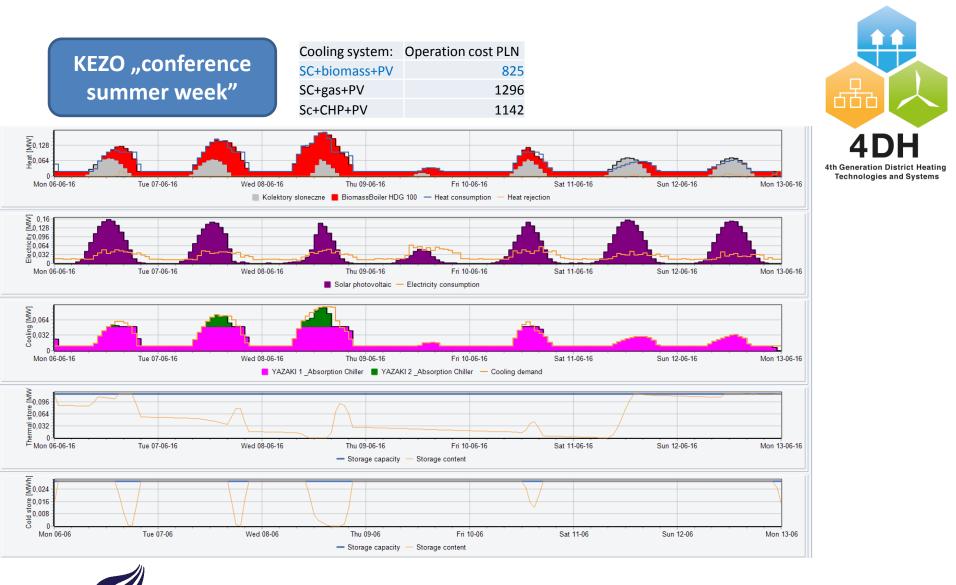
EnergyPRO analysis

KEZO "usual	
summer week"	

Cooling system:	Operation cost PLN
SC+biomass+PV	517
SC+gas+PV	798
Sc+CHP+PV	355

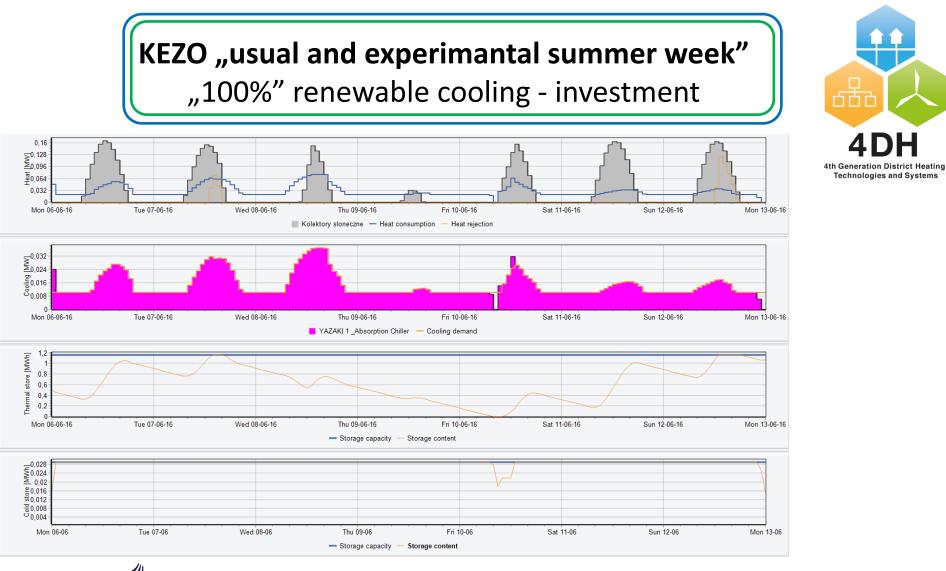

KEZO "conference
summer week"

Cooling system:	Operation cost PLN
SC+biomass+PV	825
SC+gas+PV	1296
Sc+CHP+PV	1142


KEZO "experiment summer week"

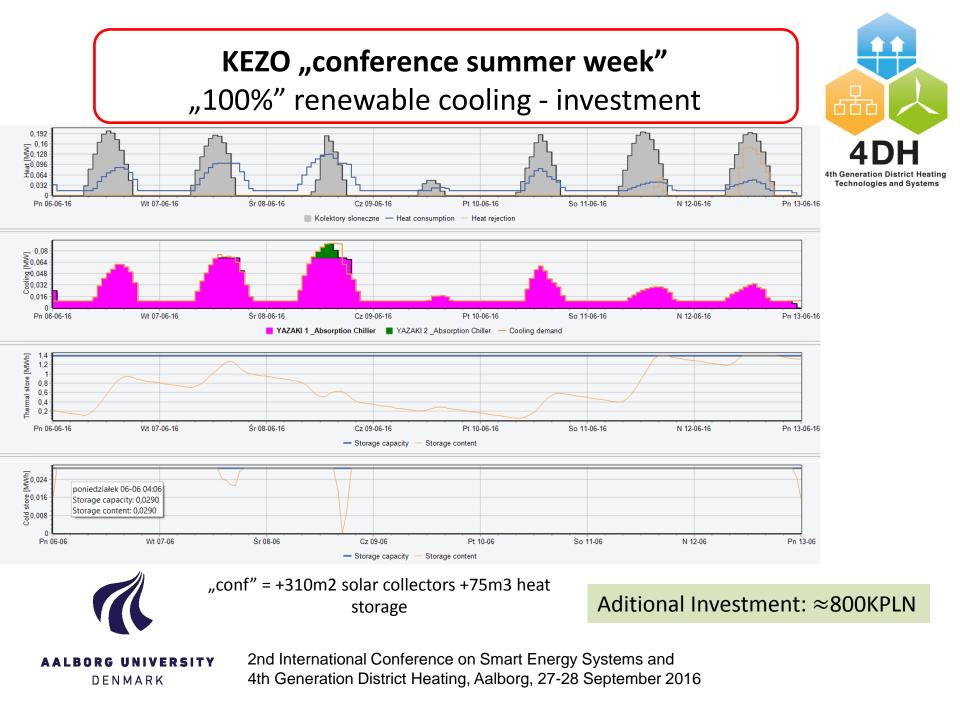
Cooling system:	Operation cost PLN
SC+biomass+PV	2027
SC+gas+PV	2267
Sc+CHP+PV	1862

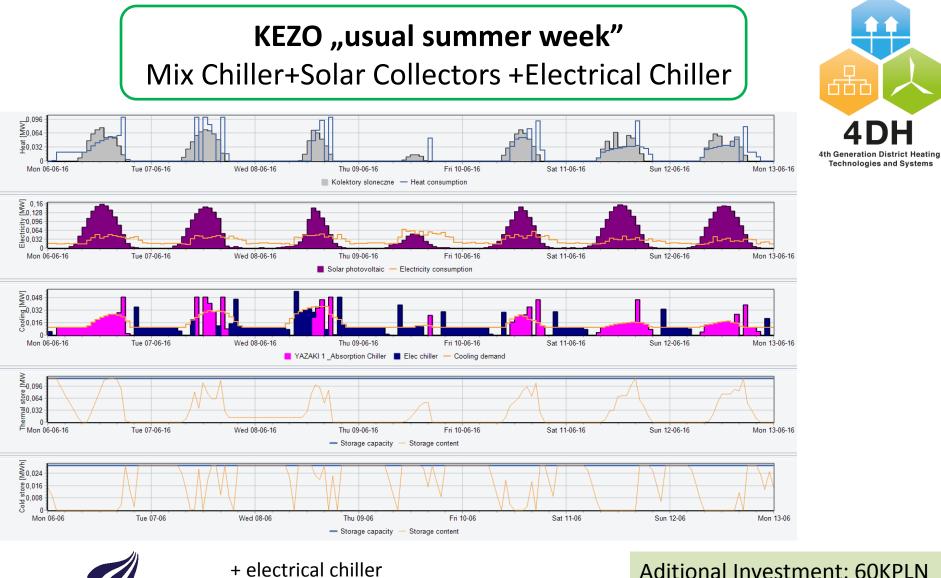
DENMARK


EnergyPRO analysis

		conference er week"		xperiment er week"	
Cooling system:	Operation cost PLN	Cooling system:	Operation cost PLN	Cooling system:	Operation cost PLN
SC+biomass+PV	517	SC+biomass+PV	825	SC+biomass+PV	2027
SC+gas+PV	798	SC+gas+PV	1296	SC+gas+PV	2267
Sc+CHP+PV	355	Sc+CHP+PV	1142	Sc+CHP+PV	1862

Other options - Investments ?





",normal, experiment" = +100m2 solar collectors +45m3 heat storage

Aditional Investment: \approx 300KPLN

AALBORG UNIVERSITY DENMARK

EnergyPRO analysis

KEZO "usual summer week"		KEZO "conference summer week"		KEZO "experiment summer week"	
Cooling system:	Operation cost PLN	Cooling system:	Operation cost PLN	Cooling system:	Operation cost PLN
SC+biomass+PV	517	SC+biomass+PV	825	SC+biomass+PV	2 027
SC+gas+PV	798	SC+gas+PV	1 296	SC+gas+PV	2 267
SC+CHP+PV	355	SC+CHP+PV	1 142	SC+CHP+PV	1 862
Investment	≈60 000	Investment	≈10 0000	Investment	≈60 000
SC+AC+PV	349	SC+AC+PV	469	SC+AC+PV	1 858
Investment	≈300 000	Investment	$\approx 800\ 0000$	Investment	≈300 000
SC+PV	207	SC+PV	207	SC+PV	1713

Concluding remarks

- depending on the cooling and electricity demand profiles, different heat sources should be combined with the absorption chillers for cooling purposes to get optimal economic configuration in options analyzed
- electricity produced should be used for covering own demand
- cost of electricity exported strongly affects the optimal system configuration
- more detailed analysis should be taken into account when considering investments

Thank You!

Sebastian Bykuć

sebastian.bykuc@imp.gda.pl

SUPREM =

Centrum Badawcze PAN KEZO Konwersja Energii This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement N° 692197

