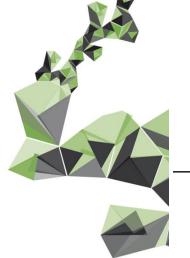

UNIVERSITY OF TWENTE.

CAES

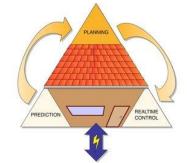
Computer Architectures for Embedded Systems

Richard P. van Leeuwen PhD CAES (Computer Architectures for Embedded Systems) University of Twente Enschede the Netherlands Saxion University of Applied Sciences the Netherlands



Contents

- Introduction research group and general scope
- Introduction Project WIEfm
- Optimal district heating supply temperature case Meppel Nieuwveenselanden
- Optimal capacities: renewable generators and storage facilities
- Interesting advantages of district heating systems for integration of renewable energy



Focus of CAES energy group

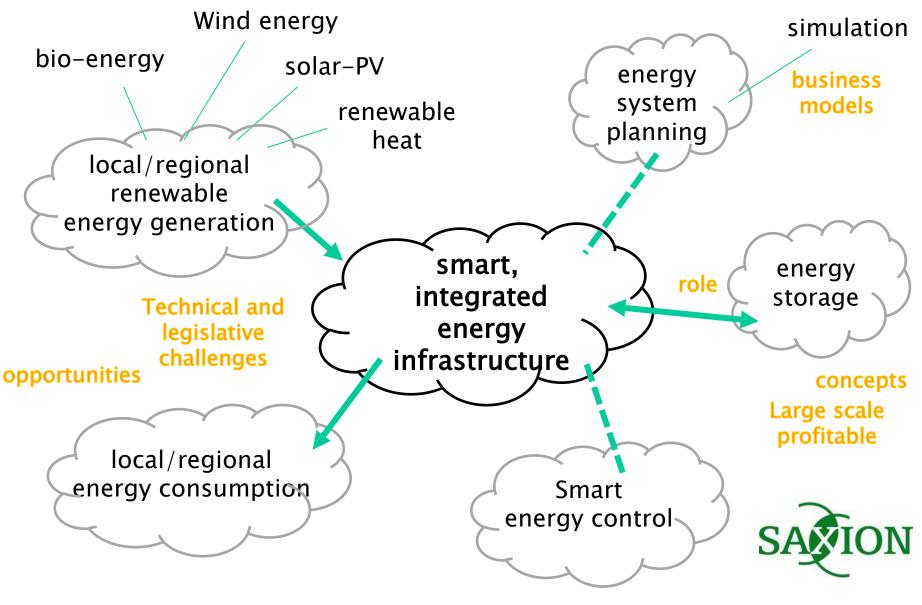
Energy-autonomous smart micro-grids:

- <u>Modeling</u> and <u>control</u> of energy streams in micro-grids
- <u>TRIANA</u> control methodology for micro-grids based on
 - Prediction
 - Planning
 - Real-time control

Main applications:

- Planning and control of <u>storage and flexibility</u> in micro-grids
- Planning and control of energy streams in <u>buildings</u>
- Measurements and control of <u>power quality</u> in micro-grids

More: www.utwente.nl/energy


UNIVERSITY OF TWENTE.

Focus of research chair renewable energy Saxion University of Applied Sciences

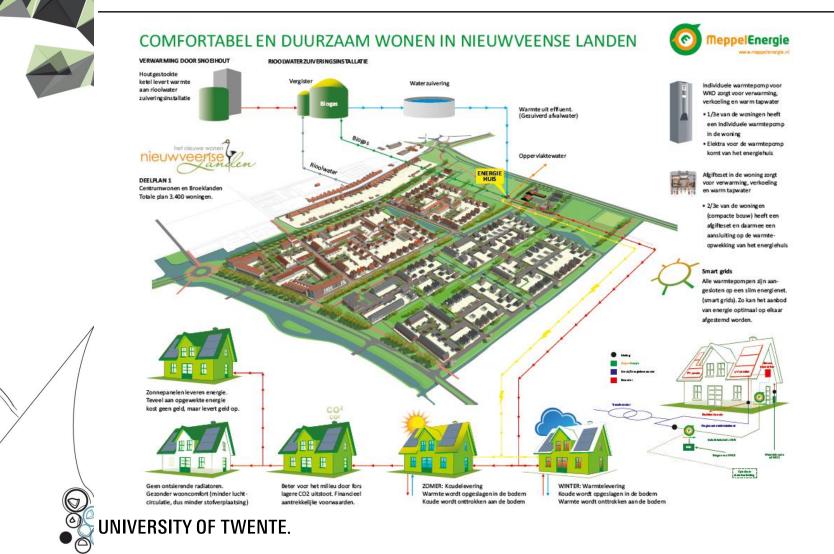
- 1. Bio-based economy and energy from biofuels
- 2. Smart buildings and energy control
- 3. Urban energy and integration of renewable energy

possibilities

WIEfm: modernizing heat supply in the Euregio

Kom verder. Saxion. More information: www.wiefm.eu

🔞 www.wiefm.eu



WiE^{fm} ist ein deutsch-niederländisches Projekt, das über das INTERREG-V-A-Kooperationsprogramm gefördert wird.

Case: Smart Grid Meppel Energie

Optimal district heating supply temperature

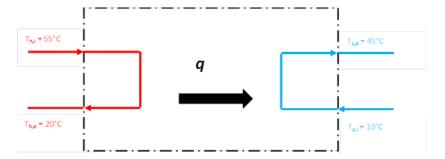
Assumptions:

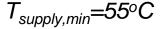
200 houses

UNIVERSITY OF TWENTE.

- Existing network designed for 70°C
- Present supply temperature: 80°C
- Joined return: 20-35°C (average: 25°C)
- Specified pipe lengths, diameters and insulation thickness
- Flow calculation available at 70°C

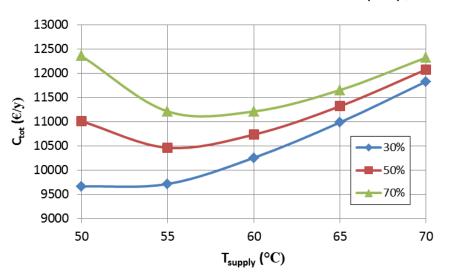
 \rightarrow Determine the optimal supply temperature





Approach optimal supply temperature

- 1. Investigate feasibility of decentral temperature boost \rightarrow negative
- 2. Investigate home heat exchanger transfer limitations


- 3. Develop models:
 - aggregated heat demand (time series)
 - pumping energy: $P_{pump} = f(\Phi_{max}, T_{supply})$
 - network heat loss: $Q = f(T_{supply})$
- 4. Determine optimal supply temperature as cost minimum
- 5. Develop legionella risk reduction measures

UNIVERSITY OF TWENTE.

Optimal supply temperature

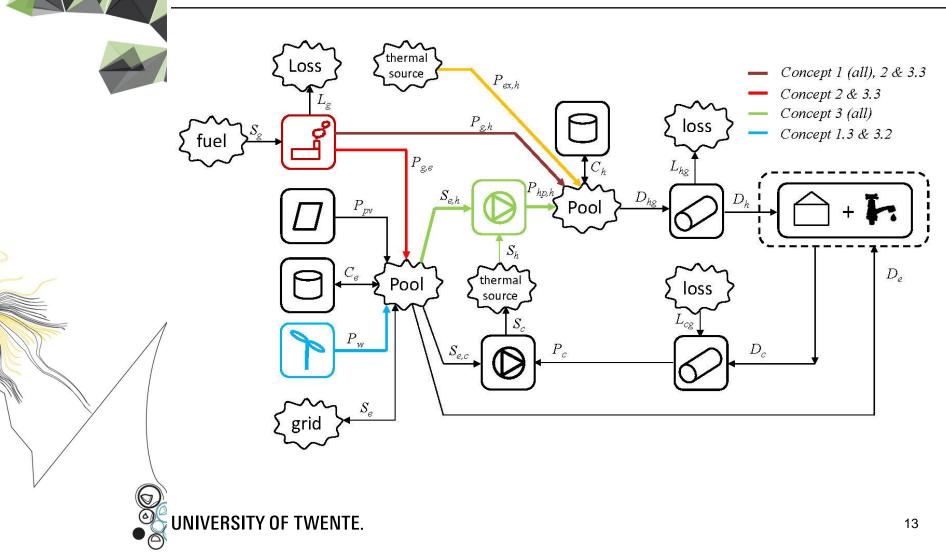
- Apply costs: pumping electricity: $\notin 0,15/kWh$, heat loss $\notin 0,03/kWh$
- Energy costs: equivalent full load hours/year: t_{pump,max}/8760

- Practical range: 25-40% for equivalent full load hours
- Include marging of e.g. 5°C to guarantee supply furthest string

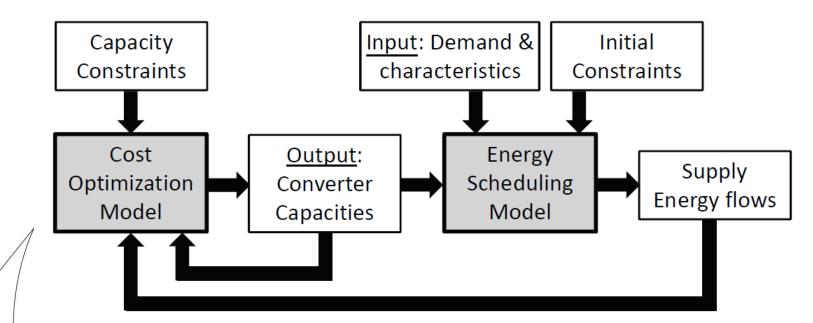
conclusion: 60°C

UNIVERSITY OF TWENTE.

Comments



- Practical experience: less pumping energy than expected → real optimum is at lower temperatures!
- Limitation Meppel case: T < 55°C causes problems for domestic hot water
- Dynamic flow and heat loss calculation to improve design of the district heating system
- Refer to papers by: Atli Benonysson, Henrik Madsen, Jan Hensen.
- Software for dynamic district heating simulation: Termis, Modelica, TRNSYS, Matlab Simulink

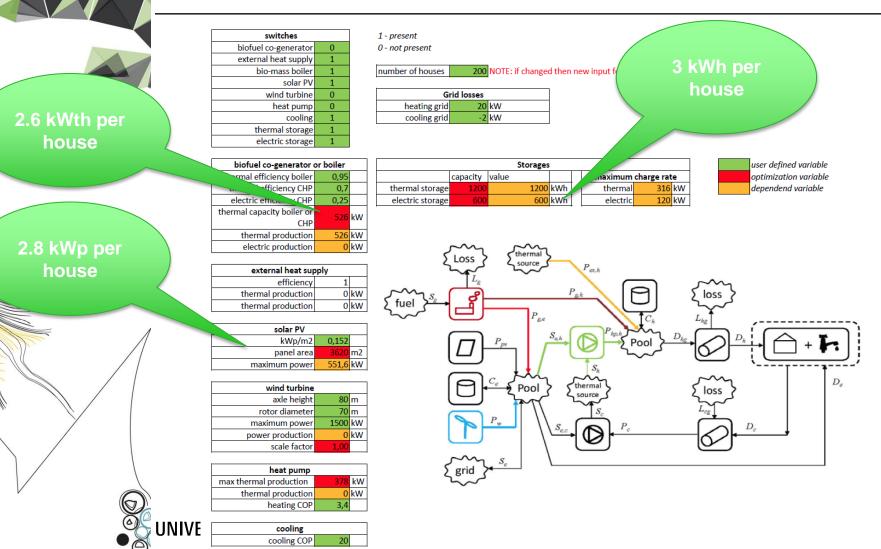


Urban energy generation capacities

Optimization principle

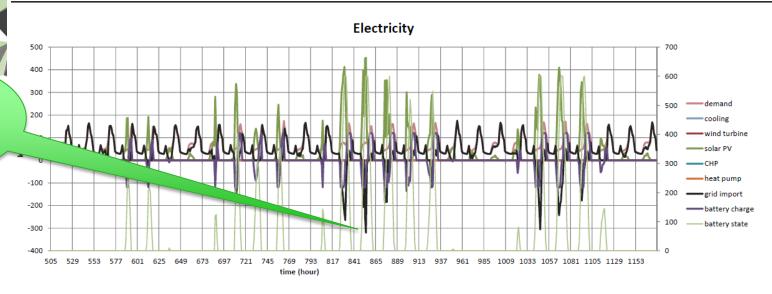
More information: refer to upcoming paper related to this conference

UNIVERSITY OF TWENTE.


Case study: Meppel with bio-fuel boiler & solar PV

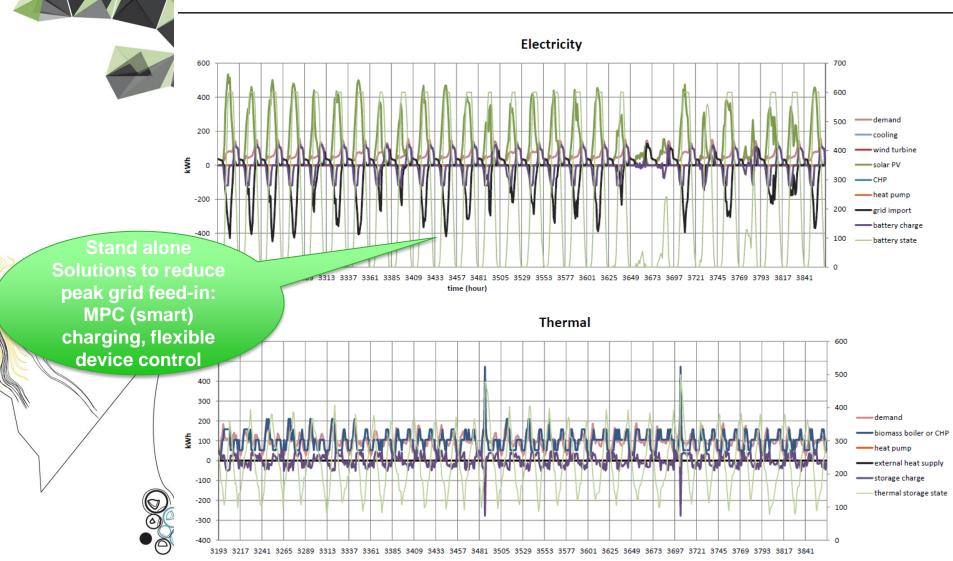
- Reference: import (grey) electricity, condensing natural gas boiler per house, natural gas network
- Case:
 - Bio-fuel boiler with thermal storage
 - Supportive: external heat (natural gas boiler)
 - Large scale solar PV for household electric demand with electric storage
- Objective: maximize self consumption, minimize external heat
- Study influence of thermal and electric storage on objective and costs

Dashboard with optimal capacities


		Re	esults				Compa referenc CO2 red	e: 82%			SA	ION		
		Re	eference	e:										
		Year totals (
				Elect	ricity				Thermal					
	household electric demand	cooling electric demand	wind turbine production	solar PV production	CHP electric production	heat pump electric consumption	grid import	grid export	heat grid demand	biomass boiler or CHP thermal production	heat pump production	external heat supply		
	-576.449	-7.313	-	-	-	-	583.762	-	-1.692.617	-	-	1.692.617		
		ectricity balance Thermal balance export import		import-export balance total balance 583.762 0 0 0 -					Self consumption of solar PV: 57%					
						Year tota	als (kWh)							
		-		Elect	ricity				Thermal					
	household electric demand	cooling electric demand	wind turbine production	solar PV production	CHP electric production	heat pump electric consumption	grid import	grid export	heat grid demand	biomass boiler or CHP thermal production	heat pump production	external heat supply		
	-576.449	-7.690	-	583.604	-	-	251.799	-251.566	-1.867.817	1.868.404	-	-		
		ectricity balance Fhermal balance	generation- demand -534 586	import-export 234	storage balance 300 -586	total balance -0 -0			Gri strengtl					
-														
	grid peak	export import	-503						requi	reu				

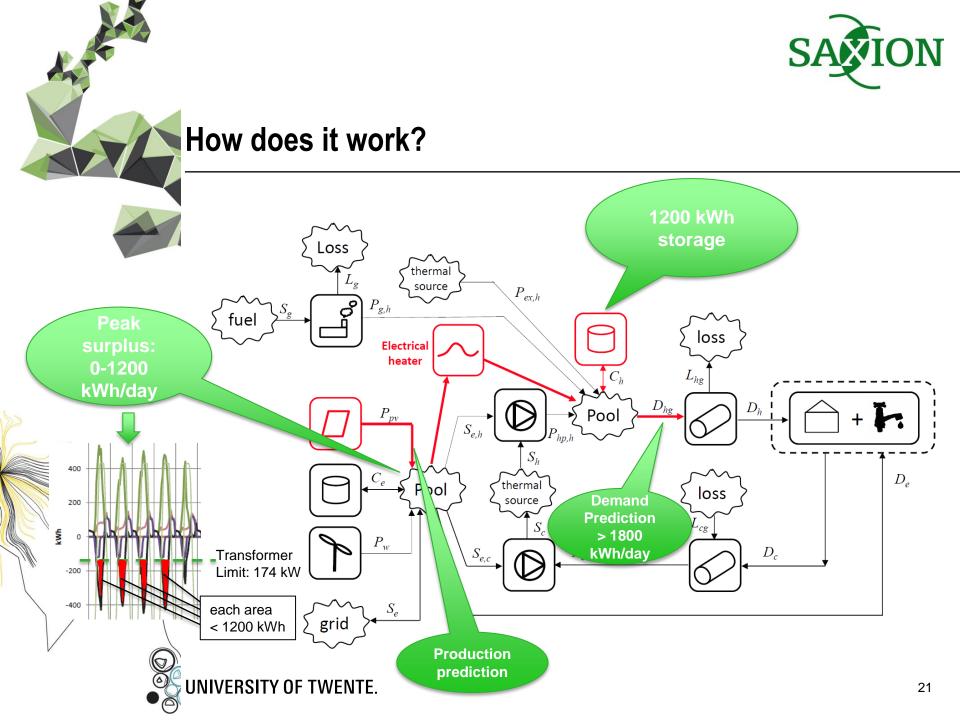
متنا برممان	export	-503			
grid peak	import	174			

4 weeks January


Storage alone does not solve grid feed-in peaks

Thermal 700 1400 600 1200 500 400 1000 300 demand 400 × 800 biomass boiler or CHP heat pump 600 M ANU 1 LILINAM **MARILL** external heat supply 0 WIT PUT THE storage charge 400 -100 thermal storage state -200 200 -300 -400 0 505 529 553 577 601 625 649 673 697 721 745 769 793 817 841 865 889 913 937 961 985 1009 1033 1057 1081 1105 1129 1153

4 weeks May



Advantage of a district heating network for integration

- Dissipate surplus electricity into district heating network
- Price incentive:
 - Grid feed-in maximum: €0,055/kWh
 - Balance power market: feed-in revenues can be negative!
 - Fuel price wood chips: €0,023/kWh
- Is there a business case?
 - Cheaper connection (uni-directional)
 - No investments in other smart solutions required
 - Less electrical storage
 - More renewable feed-in possible for existing

main grid capacity
UNIVERSITY OF TWENTE.

What are the results?

Electricity:

- Household electric demand: -567 MWh
- Cooling electric demand: -8 MWh
- Solar PV production: 584 MWh
- Grid import: 252 MWh
- Grid export: -100 MWh

Grid peaks:

- Export: -174
- Import: 174 kW

UNIVERSITY OF TWENTE.

Thermal:

- Heat grid demand: -1868 MWh
- Bio-mass boiler production: 1716 MWh
- Electric conversion: 152 MWh

Increased Self consumption from 57% to: 82%

Fuel savings: €3400/y

Unstrengthened grid connection

Case study conclusions

Optimal supply temperature of Meppel district heating system:

- Pumping energy: pipe diameters & flow
- Heat loss: pipe insulation properties
- Minimum costs: 60°C (≈ project limit)
- Opportunity: locally boost low (<55°C) supply temperatures
- Legionella risk prevention for domestic hot water

Optimal capacities of supply system:

- Model for Optimal capacities → generators, storage facilities
- Interaction between demand and renewable generation flows
- Measures to reduce electricity peaks and limit surplus feed-in

Advantage of district heating for system integration:

- Opportunities: direct power to heat to reduce electricity peaks
- Attractive cost savings possible: fuel, grid lay-out & connections

UNIVERSITY OF TWENTE

Thank you for your attention!

More details on: www.utwente.nl/energy

Electrical and thermal profile generators, PhD publications

- Online Thesis version expected: may 2017
- Future work, integrated tool:
 - Optimal capacities
 - Smart control of flexible devices
- Mail: r.p.vanleeuwen@saxion.nl

