

Planning of district heating networks

A Geographic Information-Based Mixed Integer Linear Programming Model

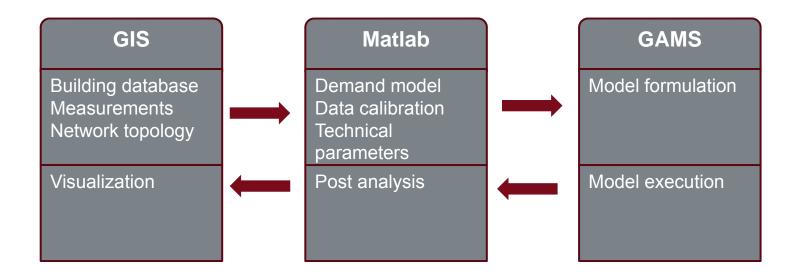
Ivar Baldvinsson, Ph.D. AIT Professor Toshihiko Nakata, Tohoku University

> 2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Ivar Baldvinsson | Scientist, Center for Energy, Thermal Energy Systems

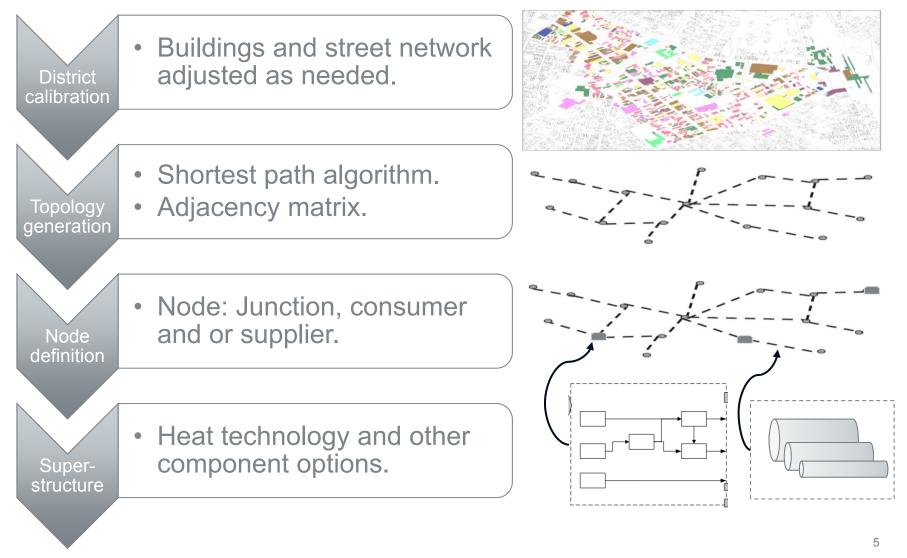
Introduction

- Motivation:
 - Lack of methods and empirical numbers (for countries like Japan) for providing pre-feasibility planning and assessment of district heating systems for new target areas.
 - Cost viability, structure, trade-off analysis, etc.
- Set up with developing/employing a district heating system design and operation optimization model.
 - Trade-off between system model accuracy and optimization solution robustness.
 - MILP is the dominant programming method for district/macro scale energy supply system optimization models.
 - Location; e.g. where to locate heat plants.
 - Scheduling; e.g. how to dispatch thermal sources and storages.
 - Network routing; e.g. to what extent to build the distribution network.



Introduction

- Lack of accurate geographical and operational characteristics of heat distribution networks.
 - Consumer aggregation, neglecting pipeline operational constraints, etc.
- Objective:
 - Develop a mixed integer deterministic optimization model for district heating system planning, taking into account geographical features.
 - Added focus on network geographical representation and operation.
 - ... to employ the model on a case district for cost optimal design.



Model structure

Model data preparation

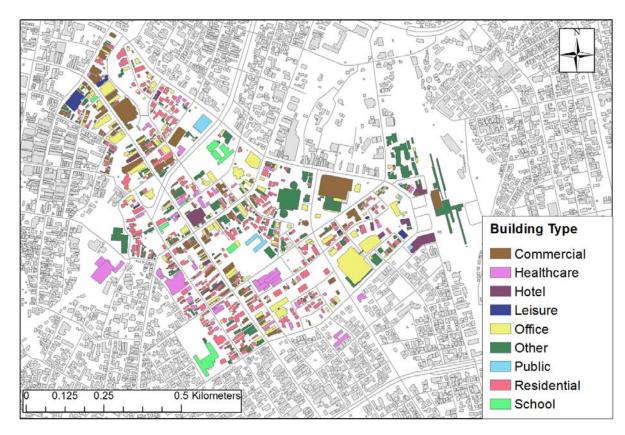
Model formulation

• MILP general formulation:

$$\begin{split} \min \sum_{j=1}^{n} c_j \cdot x_j \\ \sum_{j=1}^{n} a_{ij} \cdot x_j &= b_i \qquad (i = 1, 2, \dots, m) \\ x_j &\ge 0 \qquad (j = 1, 2, \dots, n) \\ x_j : integer \qquad (for some j = 1, 2, \dots, n) \end{split}$$

- Constraint groups:
 - Energy conservation.
 - Pipeline network structure.
 - Network operation.
 - Heat plant location, sizing and operation.

Model formulation


- Objective function:
 - Minimize the total annualized system cost.

 $\min Z = IC_{pipe} + IC_{plant} + OMC_{plant} + C_{fuel} + C_{pump} - C_{sell}^{Grid}$

IC _{pipe}	Investment cost of pipeline network
IC _{plant}	Investment cost of heat plants
OMC _{pipe}	Operation & maintenance cost of plants
C _{fuel}	Total fuel cost
C _{pumpe}	Total pump cost
C ^{Grid} _{sell}	Total electricity sold to the grid

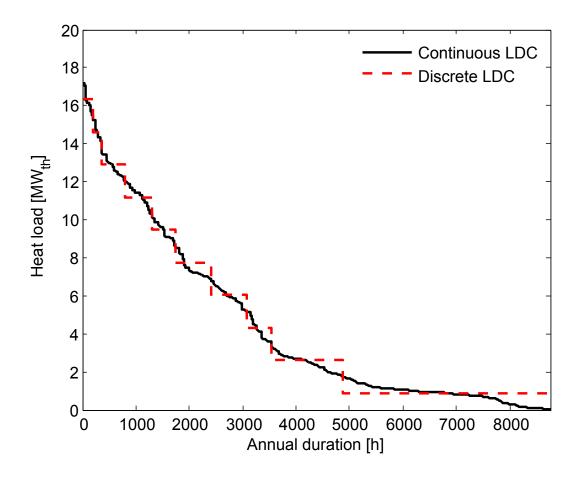
- Project: Smart energy system design of Hirosaki city centre (North Japan)
- 1st design phase: Heat supply to strategically selected buildings (17 in total)

Heat plant candidates

Biomass wood chips, municipal solid waste (MSW) and Geothermal heat available local resources.

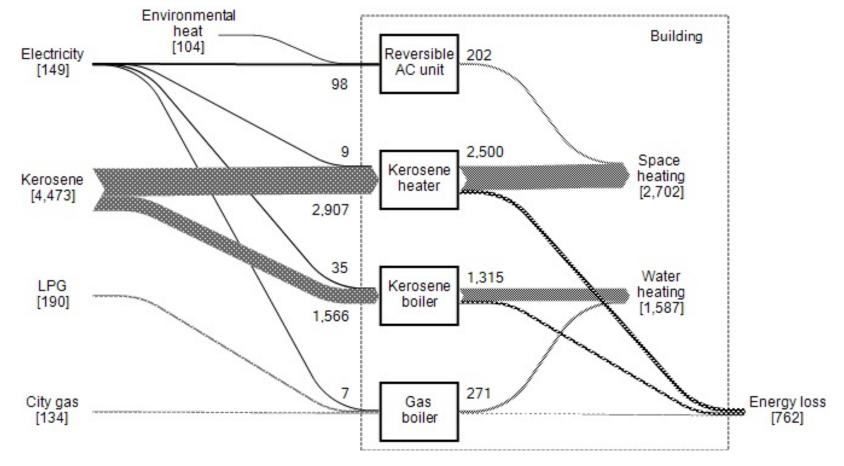
Туре	η_{th}	η_{el}	AF	Lower bound [MW]	Upper bound [MW]
Gas HOB ^a	0.97	-	0.98 ^d	1	20
Gas CHP ^a	0.45	0.38	0.9	5	40
Biomass HOB ^a	1.08	-	0.96	1	17.6
Biomass CHP ^a	0.77	0.29	0.9	5	17.6
MSW HOB ^a	0.95	-	0.92	1	21
MSW CHP ^a	0.74	0.24	0.92	5	21
Geothermal ^b	1	-	0.95	0	28

^aParameters adopted from (Energinet.dk 2012) ^bAdopted from (Baldvinsson and Nakata 2014)

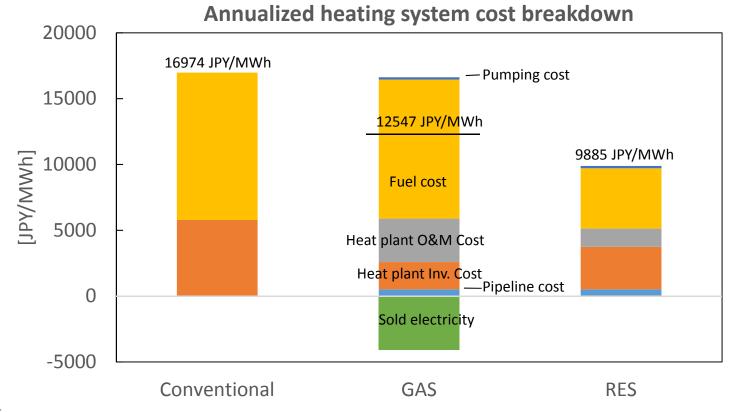

Pipeline candidates

- PEX type manufactured by MESCO.
- di: Inner diameter, ξ_{tot} : Total thermal resistance.

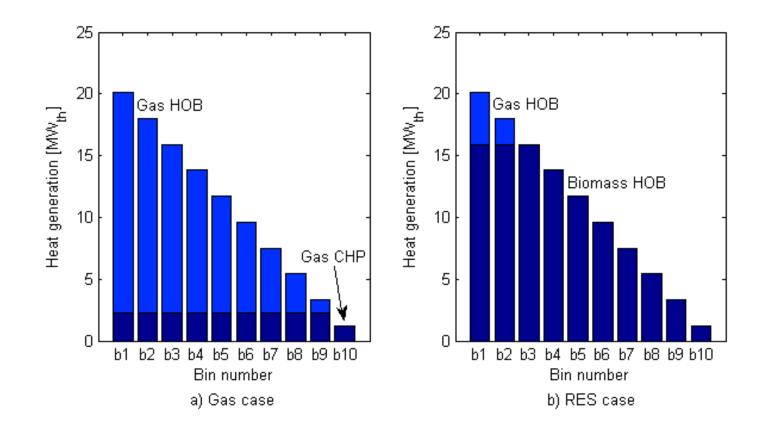
Pipe	Pipe type									
properties	30/118	40/118	50/152	65/152	75/176	100/210	125/228	150/272	200/311	250/362
d _i [m]	0.0347	0.0395	0.0504	0.0638	0.0748	0.0956	0.117	0.137	0.182	0.225
ξ_{tot} [mK/W]	5.819	5.055	5.276	3.898	3.838	3.453	2.735	2.800	1.966	1.617
Cost [JPY/m]	11,400	12,200	15,900	18,300	21,200	28,600	41,500	48,900	56,900	74,800



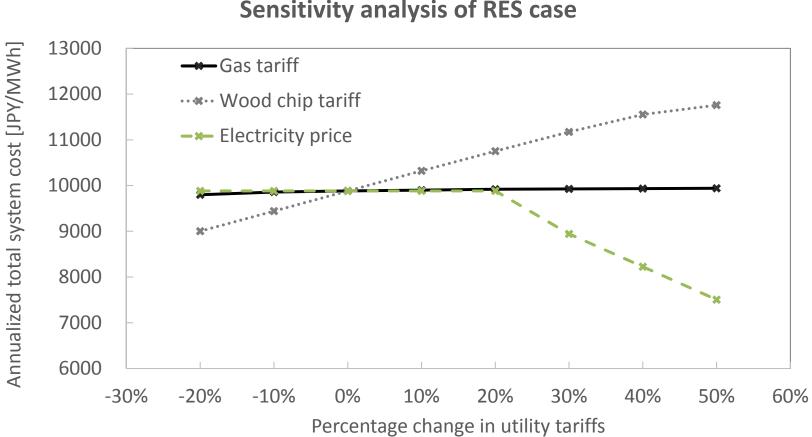
Heat load duration curve approximation



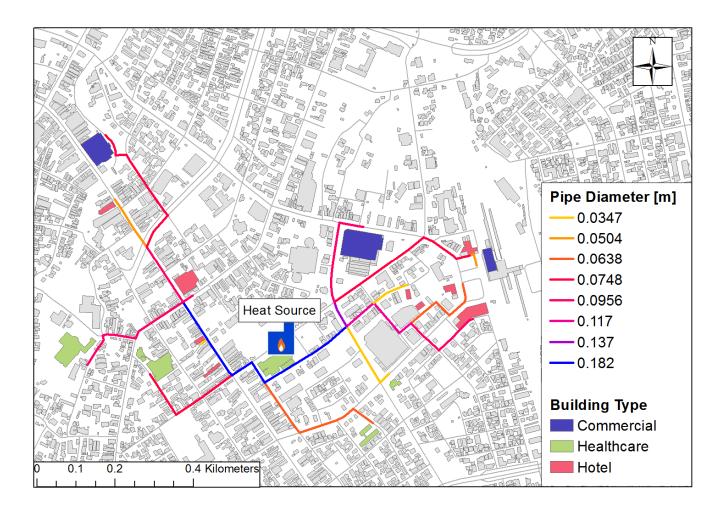
Reference system of Hirosaki city (Annual energy flow [TJ])



- Gas scenario: Gas technologies only considered.
- RES scenario: Local renewables also included.



Optimal thermal power supply



Sensitivity analysis of RES case

Optimal pipe network

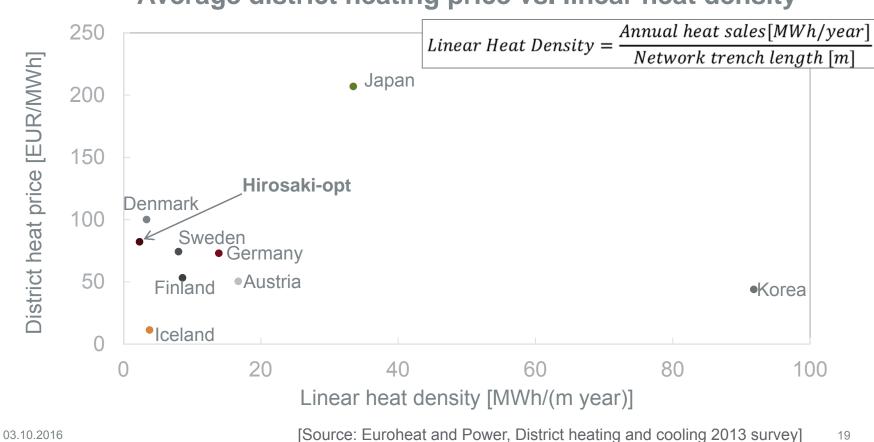
Cost implication of network flow temperature

- LT: Low temperature mode; supply: 60° C, return: 30° C.
- MT: Medium temperature mode; supply: 80° C, return: 40° C.

Network heat loss and hydraulic energy demand comparison [MWh]

Operation				-	Period n	umber					
mode	b1	b2	b3	b4	b5	b6	b7	b8	b9	b10	Total
Distribution	network	heat los	5								
LT	29	21	59	61	56	78	74	48	129	265	819
MT	34	25	70	74	67	95	91	60	167	385	1069
Distribution network hydraulic energy from pump											
LT	34	23	59	57	45	53	41	20	37	38	408
MT	30	21	53	51	40	48	37	18	33	35	367

Cost implication of network flow temperature


- Network equivalent diameter:
 - LT: 0.108 m
 - MT: 0.093 m

Cost comparison:

Cost type [10 ⁶ JPY/year]	LT mode	MT mode
Network cost	24.8	20.7
Pumping cost	7.8	7.1
Fuel cost	183.8	184.7
Sum	216.4	212.5

Result comparison with empirical values

Average district heating price vs. linear heat density

Conclusion

- A deterministic geographic-based district heating system MILP planning model was developed and shows promising results.
 - Network structure and operation accuracy.
- Despite district heating systems being few and far between in Japan, model results indicate socio-economic benefits of DHS over the existing system.
 - Less cost, primary energy consumption and GHG emissions.
- Fuel savings from low temperature operation are not sufficient to compensate the cost increase in pipe network.
 - Limits: Low operation impact on heating technologies not modeled, thus whole system effect not accounted for.
- Model is currently being further applied for a new development area in cooperation with Politecnico di Milano under the IEA-EBC Annex 64.

AIT Austrian Institute of Technology

your ingenious partner

Ivar Baldvinsson, Ph.D.

Energy Department Sustainable Thermal Energy Systems ivar.baldvinsson@ait.ac.at

+43(0) 664 88256094