

2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Modelling, design and evaluation of decentralized energy systems for districts and neighborhoods

Ashreeta Prasanna, Viktor Dorer Empa, Urban Energy Systems Laboratory

Distributed multi-energy systems (DMES)

Example: Suurstoffi Areal, Risch Rotkreuz

Questions:

- 1. What are the benefits of a multi-energy system?
- 2. How can DMES be optimally designed?
- 3. How can DMES be optimally operated?

Given:

- Time-varying resource availability
- Multi-energy demand patterns
- Technical & economic constraints
- Regulatory/policy environment
- Uncertainties regarding fuel prices, energy demand, policy

Optimisation model – Energy hub approach

Energy hub approach Optimisation OUTPUT INPUT TRANSFORMATION, **CONVERSION & STORAGE** Electricity -S. hydro →electricity ΡV \bigcirc Solar thermal Biomass → heat Organic matter Wood

4DH 4th Generation District Heating Technologies and Systems

Optimisation vs. Simulation

- Simplified representation of components (linear equations)
- Analysis of complete system with individual building loads
- Global optimisation of system, over time horizon
- Objectives: Dimensioning of systems and operation strategy

- Detailed description of the components (temperature, pressure, partial loads, etc.)
- Analysis of a specific system configuration
- No global optimisation
- Objectives: Understand dynamic system behavior, and energy performance

Case study : Low energy district in Switzerland

20 buildings, which include 1 kindergarten, 1 community center and 3 mixed use buildings.

Borehole heat

exchangers

'Anergienetz' – experience

- Monitoring (15 min)
- Original design heating loads should roughly balance cooling loads and heat input from hybrid photovoltaic panels.
- Performance gap
- Network heat balance
- Network pumps electricity consumption

Optimisation – Heat balance

- The total network deficit calculated by the model is close to measured value
- Difference in the amount of heat injected into the network and drawn from the network
- Reason for lower electricity requirement for pumping calculated by the model

Optimisation – Heat balance

Heat fluxes (hourly values) (kWh / h)

	Total Demand	PV Production	Load cover factor	Supply cover factor
	(MWh/year)	(MWh/year)	(year)	(year)
BF2 (residential)	1068	274	0.257	1
BF5 (offices)	1584	65	0.041	1
BF2+BF5	2652	346	0.130	1

Sum of Total_Betreib_BF2_BF5 Sum of Total_BF2_BF5 Sum of Total_PV_BF2_BF5

	Load cover factor	Supply cover factor	
	(15 mins)	(15 mins)	
BF2 (residential)	0.220	0.959	
BF5 (offices)	0.041	1	
BF2+BF5	0.130	0.997	

	Electricity for Heating	PV Production	Load cover factor	Supply cover factor
	(MWh/year)	(MWh/year)	(year)	(year)
BF2	365	274	0.752	1
BF5	581	65	0.111	1
BF2+BF5	946	346	0.365	1

Sum of Total_Betreib_BF2_BF5 Sum of Total_PV_BF2_BF5

Time 💌

er factor

Improving supply cover factor to 1:

• Instead of PV sold to the grid, HP are run in the summer and heat produced is sent to network/storage

~117 MWh/year or 117 x COP (8) = 936 MWh_{th}/year

Conclusions

Benefits of multi energy system:

- Improve energy balance in low energy districts
- Improvement of supply cover factor
- Possibility to optimise operation of heat pumps

Current optimisation model:

- Calibrated and verified with monitoring data
- Identified possible optimisation of system energy balance, given existing knowledge of system

Further steps:

- Detailed simulation of network to derive further constraints for network optimisation
- Development of further concepts/scenarios for new districts

References:

Salom J., Marszal A.J., Candanedo J., Widen J., Lindberg K.B., Sartori I., Analysis Of Load Match and Grid Interaction Indicators in NZEB with High-Resolution Data, IEA Task 40 / Annex 52, October 2013.

Vetterli N., Brücker S., Monitoring Suurstoffi – Monitoring einer thermischen Arealvernetzung in Kombination mit einem Erdsondenfeld, Jahresbericht 2014, Bundesamt für Energie BFE, Bern, 2015

ZugEstates, Nachhaltigsbericht 2015, retrieved from http://www.zugestates.ch/documents/

Thank you for you time

Contact: ashreeta.prasanna@empa.ch

EXTRA slides

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Heat demand and supply – BF2 and BF5

Measured data compared with model results

- Freecooling higher due to data reduction high variability of cooling required during summer months
- Differences due to data reduction high variability of solar radiation during summer months

Network pumps consumption– BF2 and BF5

Measured data compared with model results

- Model result is 26 MWh/year while the measured value is 53 MWh/year
- Heat energy recovered from freecooling is stored within the buildings and used to preheat domestic hot water

Heat pumps heat intake and consumption

Measured data compared with model results

- During certain months the HPs for the production of DHW in BF2 and BF5 were shut down and substituted by electric heating to prevent undercooling of the borehole field.
- Change in operation could have impacted the coefficient of performance (increase of COP).
- Measured heat intake and electricity consumption of the heat pumps is thus lower.

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

4DH Ath Generation District Heating Technologies and Systems

Konfiguration	BF	Erdsonden	Bedarf		
			Wärme MWh/a	WW MWh/a	Freecooling MWh/a
Vergleichsfall (Messung:	BF2	Feld West 215x150 m	603	315	45
Okt/2013 – Sep/2014)	BF5		856	322	533
Basisfall	BF2	Feld West 215x150 m	616	304	73
	BF5		848	329	678
	BF3		549	375	71

RH & WW Total: 2'096 MWh/a (E+P: 2'009 MWh/a)

FC Total: 578 MWh/a (E+P: 574 MWh/a)

Heat demand and production – BF3 included

Heat demand and production – **IF** all buildings had PVT thermal production

