



### PRESENTING YOU THE ECODISTR-ICT IDSS

An integrated descision support system for district renovations

2016-09-29 // Kevin Vervuurt // Kevin.Vervuurt@arup.com







1. Introduction Arup **Project Factsheet** 2. Ecodistr-ict tool **Problem Statement** Objective Approach **IDSS** Dashboard 3. Warsaw case study Case Study Issues **Stakeholders** Modules and Alternatives **Overview of KPI scores** 

#### 4. Conclusion

"Total Architecture" implies that all relevant design decisions have been considered together and have been integrated into a whole by a well organised team. This is an ideal which is well worth striving for, for artistic wholeness or excellence depends on it.

- Ove Arup



#### Services

| Α |                         | F |      |
|---|-------------------------|---|------|
|   | Acoustic consulting     |   | Fag  |
|   | Advanced technology and |   | Fac  |
|   | research                |   | Fire |
|   | Airport planning        |   | Flu  |
|   | Architecture            | G |      |
|   | Audio visual and        |   | Ge   |
|   | multimedia              |   | sys  |
| В |                         |   | Ge   |
|   | Bridge engineering      | н |      |
|   | Building design         |   | Hyd  |
|   | Building Information    | 1 |      |
|   | Modelling               |   | Infr |
|   | Building physics        |   | Inte |
|   | Building retrofit       |   | Inte |
| С | -                       |   | IT a |
|   | Carbon management       |   | sys  |
|   | Catastrophe risk and    | J |      |
|   | insurance               | κ |      |
|   | Civil engineering       | L |      |
|   | Cost management         |   | Lar  |
| D | 0                       |   | Lig  |
|   | Distributed energy      | Μ | •    |
| E |                         |   | Ма   |
|   | Economic planning       |   | Ma   |
|   | Economics and planning  |   | Ма   |
|   | Electrical engineering  |   | Ма   |
|   | Energy strategy         |   | Me   |

Energy strategy Environmental consulting Expert witness Façade engineering Facilities management **Fire safety** Fluid dynamics

Geographic information systems Geotechnics

Hydrogeology

Infrastructure design Interchange design International development IT and communications systems

Landscape architecture Lighting design

Management consulting Maritime engineering Masterplanning Materials Mechanical engineering Ν Nuclear energy 0 Oil and gas Operations consulting Organisational behaviour Ρ Planning policy advice Product design Programme and project management Public health engineering Q Quantity surveying R Rail engineering **Renewable energy** Research Resilience, security and risk S

Seismic design Site development **Software products** Specialist technical services **Structural engineering Sustainability consulting Sustainable buildings design** Sustainable infrastructure design Т

U

V

W

Х

Υ

Ζ

Theatre consulting Thermal energy Town planning Transaction advice Transmission and distribution Transport consulting Tunnel design

### Vertical transportation design

Waste management strategies Waste to Energy solutions Water engineering Wind engineering





#### LONDON HEAT NETWORK MANUAL

MAYOR OF LONDON







- Full titleIntegrated decision support tool for retrofit and renewal towardssustainable districts
- **Duration** December 2013 November 2016
- **Total budget** 4.1M€, of which 3.0M€ EU FP7 funding
- Website www.ecodistr-ict.eu
- Coordinator VITO, Belgium

Consortium



SEVENTH FRAMEWOR

### **5 ECODISTR-ICT CASE STUDIES THROUGHOUT EUROPE**





## How shall we renew an existing district and its composing buildings?

Campanar district, Valencia (Spain)

## **MULTISTAKEHOLDER**





10



## **MULTIDISCIPLINARY PROBLEM**



- Energy
- Local green space and ecologic values
- Resource efficiency
- Social quality
- Life cycle costing
- Heat stress
- ...





Example: Energy

From building elements and buildings to district level analysis





## How shall we renew an existing district and its composing buildings?

- connect the main stakeholders and decision makers
- use (open) data for better informed decision making

 $\rightarrow$  there is a need for a better coordinated approach that allows for optimization and prioritization of decision-making.

## **ECODISTRICT IDSS**



 $\rightarrow$  Integrated decision support system

aimed at facilitating sustainable renewal of districts



Source image: Bipolaire



### **INTEGRATED DECISION SUPPORT TOOL**

#### MULTI-ACTOR

Connecting the main stakeholders in urban district transformation programs



#### MULTI-SCALE

From building elements and buildings to district level analysis



#### MULTI-DISCIPLINARY

Connecting tools on water use, energy, nature based solutions, social aspects, economic analysis



## **Approach of Ecodistr-ICT IDSS**



- KPI set is composed by users at the beginning of the process no predefined set of KPI's
- Weight and ambitions set by stakeholders individually Not 'forced to agree' before starting the analysis
- No new calculation modules developed in the project
   We implemented / adapted existing (open source) calculation tools
- 'Facilitator': expert user + process guidance

to balance ease of use for broad range of stakeholders while dealing with complex issues and expert software

IMB: inter-model broker

Connects multiple calculation modules, data module and user interface (dashboard)

## **Step by step approach implemented in IDSS**

| <ul> <li>Analyse problem</li> </ul>      | $\rightarrow$ choose set of KPI's + calculation modules | < <u> </u> |
|------------------------------------------|---------------------------------------------------------|------------|
| <ul> <li>Collect data</li> </ul>         | $\rightarrow$ Qualitative or quantitative               |            |
| <ul> <li>As is situation</li> </ul>      | $\rightarrow$ Visualise KPI's for current situation     |            |
| <ul> <li>To be situation</li> </ul>      | → Set ambitions                                         |            |
| <ul> <li>Develop alternatives</li> </ul> | $\rightarrow$ Manual, or using design tool              |            |
| <ul> <li>Compare alternatives</li> </ul> | $\rightarrow$ And discuss with other stakeholders –     | }          |

#### IN REALITY: ITERATIVE PROCESS





Next

## KPI's set by user



| KPI database                                       | KPI set for this decision process                                    |
|----------------------------------------------------|----------------------------------------------------------------------|
| Change of global warming potential                 | ENERGY - Distribution of Energy Consumption: Fossil for heating      |
| LCC<br>Use C Edit                                  | ENERGY - Distribution of Energy Consumption: Electricity for heating |
| PV_kWh_year_dwelling_Rubroek<br>✓ Use Ø Edit       | ENERGY - Distribution of Energy Consumption: Electricity for cooling |
| PV kWh/year per dwelling Rubroek                   | ENERGY - Total Energy Consumption for Heating per Built Area         |
| Test_Energy Consumption<br>✓ Use Ø Edit            | LCC payback period                                                   |
| Biotope area factor                                | LCC - NPV renewal solutions - District scale                         |
| Change of global warming potential per heated area | LCC - Payback period renewal solutions - district scale              |

## **Qualitative KPI's alongside quantitative**



| IDSS Dashboard          | Analyse probl                  | em 👻      | Collect data 🗸 | As is 👻     | To be                   | Devel                    | op alternative | s Ass   | ess alternative | s Co    | ompare alternatives  | 1        | L test -  |
|-------------------------|--------------------------------|-----------|----------------|-------------|-------------------------|--------------------------|----------------|---------|-----------------|---------|----------------------|----------|-----------|
| Restructuring the Waran | ide Slinger 👻                  |           |                |             |                         |                          |                |         |                 |         | Last                 | saved: ( | 8:23:04 - |
| C Develo                | op alternatives<br>alternative | : Slinç   | jer renew      | val         |                         |                          |                |         |                 |         |                      |          |           |
| Quality<br>K            | of Life - Rubro                | ek delive | red by Qualit  | ative KPI ( | status: suc             | Cess) T                  | 6 score        | 7 score | 8 score         | 9 score | II Set score Chable  | d        |           |
| Quality<br>K            | Of Life - reside               | nts deliv | ered by Quali  | tative KPI  | (status: suc<br>4 score | 5 score                  | 6 score        | 7 score | 8 score         | 9 score | II Set score Finable | d        |           |
| Water d                 | rainage deliver                | red by Ma | anual input (n | 10 module   | selected)               | (status: su<br>5 m3/hour | 20 m3/t        | our     | 25 m3/hour      |         | I Set manual Chable  | d        |           |

→ Gathered by 'epert judgement' or data crowdsourcing module

## **KPI weights and ambition**



#### $\rightarrow$ Can be set by each stakeholder individually

| MOBILITY - Modal split origin priv<br>As is 71 %<br>KPI MOBILITY - Modal split origin p       | GREEN - Green                                | Area Fa    | ctor                   |                                            | ×  |   | 2 3<br>Weight      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------|------------|------------------------|--------------------------------------------|----|---|--------------------|
| GREEN - Green Area Factor<br>Set ambition As is 0.39 score Ambit<br>KPI Ambition<br>U.5 score | Set KPI Amb<br><sup>Weight</sup><br>Ambition | ition<br>3 | 0: not importan<br>0.5 | t - 5: very important<br>Ambition in score |    |   | Weight             |
| 0 0.1 0.<br>GREEN - Climate Adaptation<br>As is 0.11 score                                    | Sufficient: 0 score                          |            |                        |                                            |    | 1 | 2 3                |
| KPI GREEN - Climate Adaptation is                                                             | Excellent: 1 score                           |            |                        |                                            |    |   | Weight             |
| GREEN - Social Value<br>Set ambition As is 0.07 score Ambition<br>U.15 score<br>0 0.1 0.2     | 0.3 0.4                                      | 0.5        | 0.6 0.7                | Cancel                                     | Ок | 1 | 2 3<br>S<br>Weight |



22



Facilitator

Biotope area factor

3

0

0.3 score

0.5 score

### **Expert view of KPI scores for 1 stakeholder**





## **Results displayed on map**





## **Stakeholder interaction**





# ECODISTR-ICT Warsaw - case study

#### Location





#### Key data

- Since the early 1920s it was one of the industrial areas of Warsaw, many important works and factories were located there - the area being previously (20 years ago) fully occupied by factories.
- In last 6 years most of the big factories were transformed into offices - the area is now retrofitting into modern office / residential district with other complimentary services (shopping centre, cinema, medical facilities etc).
- Currently it changed his function from typical offices district to mixed function apartment house and office

#### Past and ongoing developments



**ONGOING** 





#### Main issues

- 1. Outdated utilities network
- 2. Insufficient capacity of energy and transport network
- 3. Too many private vehicles
- Unclear landownership status of some plots
- 5. No visions/ masterplans by the city authority
- 6. Ongoing office/residential construction
- 7. Many old (60's, 70's, 80's) residential buildings
- 8. Fossil fuel based energy system

#### Main stakeholders

- Energy providers
- City authority
- Transport planning authority
- Housings associations
- Residents
- Commuters (people working in the area)
- Real estate developers
- Engineers
- Financial institutions

#### Main stakeholder objectives

- Efficient, reliable, flexible and affordable energy system
- Integrated planning; more mixed use planning in relation with transport planning
- Improve energy efficiency of old buildings
- Green certification of buildings
- Improved car accessibility
- Enough parking spaces
- Higher public transport accessibility
- Attractive public space



| Ke     | ey stakeholder                               | Module                                                 | Issues                                                                                                                                                            | Ambitions                                                                                     |  |  |  |  |
|--------|----------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| -      | Researcher/<br>Engineer                      | Energy (Dimosim)                                       | <ul> <li>Insufficient capacity of<br/>energy network</li> <li>Fossil fuel based</li> </ul>                                                                        | <ul> <li>Future proofed energy system<br/>(Energy trilemma)</li> </ul>                        |  |  |  |  |
| -<br>- | Developer<br>Energy/utility<br>company       | LCC                                                    | - High investment costs                                                                                                                                           | <ul> <li>Economic efficiency and cost<br/>effectiveness</li> </ul>                            |  |  |  |  |
| -      | EC<br>City (green)<br>planning<br>department | Green spaces                                           | <ul> <li>No integrated green<br/>infrastructure</li> </ul>                                                                                                        | <ul> <li>Biodiversity,</li> <li>Water management,</li> <li>Attractive public space</li> </ul> |  |  |  |  |
| -      | City Transport<br>planning<br>department     | Mobility                                               | <ul> <li>Bad accessibility during peak<br/>hours</li> <li>Private transport as the<br/>dominant mode</li> <li>Capacity of public transport<br/>limited</li> </ul> | <ul> <li>Good accessibility (drastic reduction of traffic congestion)</li> </ul>              |  |  |  |  |
| -      | Developer<br>Researcher/<br>Engineer         | Energy<br>Performance<br>improvement<br>(Energy label) | <ul> <li>Old building stock with a<br/>high energy demand</li> </ul>                                                                                              | <ul> <li>Reduce energy demand of<br/>consumers</li> </ul>                                     |  |  |  |  |



| Modules                              | As is (Existing situation)  | Alternative 1                                         | Alternative 2                           | Alternative 3                                           | Alternative 4                                   |
|--------------------------------------|-----------------------------|-------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------------|
| Dimosim                              | HTDH                        | Drastic energy<br>demand reduction<br>(building skin) | LTDH (building skin +<br>energy system) | All electric + PV<br>(building skin +<br>energy system) | LTDH + DC<br>(building skin +<br>energy system) |
| LCC (Dimosim)                        | Retrofitting<br>requirement | See Dimosim<br>variant                                | See Dimosim variant                     | See Dimosim<br>variant                                  | See Dimosim<br>variant                          |
| Energy<br>Performance<br>Improvement | Inefficient                 | See Dimosim<br>variant                                | See Dimosim variant                     | See Dimosim<br>variant                                  | See Dimosim<br>variant                          |
| Mobility                             | Car oriented                | Improved public<br>transport                          | Reduced private<br>transport            | Improved traffic<br>management                          | Sum off all*                                    |
| Greenspaces                          | Not managed                 | Green roofs                                           | Permeable surfaces                      | Green roofs +<br>Permeable surfaces                     | Microclimate<br>(public space)*                 |

# ECODISTR-ICT Warsaw - DIMOSIM

| Scenario        | Description        | Appliances | Windows       | Walls          | Heating | Cooling     | Energy   |
|-----------------|--------------------|------------|---------------|----------------|---------|-------------|----------|
|                 |                    |            |               |                | system  | system      | supply   |
| 1. As is        | - Existing         | - Existing | - BAU         | - BAU          | HTDC    | - Only      |          |
|                 | SILUATION          | SILUATION  |               |                |         | functions   |          |
| 2. Energy       | - Energy demand    | - Energy   | - Tripple     | - Additional   | HTDC    | - Only      |          |
| demand          | reduction by       | efficient  | glazing for   | insulation for |         | office      |          |
| reduction       | insulating the     | lighting   | all functions | all functions  |         | functions   |          |
|                 | building skin      |            | except office | except office  |         |             |          |
|                 | - Energy efficient |            | functions     | functions      |         |             |          |
|                 | appliances         |            |               |                |         |             |          |
| 3. LTDH         | - Scenario 2       | - Energy   | - Tripple     | - Additional   | LTDH    | - Only      |          |
|                 | measures           | efficient  | glazing for   | insulation for |         | office      |          |
|                 | - Low              | lighting   | all functions | all functions  |         | functions   |          |
|                 | temperature        |            | except office | except office  |         |             |          |
|                 | district heating   |            | functions     | functions      |         |             |          |
| 4. All electric | - Individual Heat  | - Energy   | - Tripple     | - Additional   | LTDH    | - Only      | - 50% of |
|                 | pumps, energy      | efficient  | glazing for   | insulation for |         | office      | all roof |
|                 | production         | lighting   | all functions | all functions  |         | functions   | area     |
|                 |                    |            | except office | except office  |         |             |          |
|                 |                    |            | functions     | functions      |         |             |          |
| 5. LTDH +       | - Scenario 3       | - Energy   | - Tripple     | - Additional   | LTDH    | - District  |          |
| district        | measures           | efficient  | glazing for   | insulation for |         | cooling for |          |
| cooling         | - District cooling | lighting   | all functions | all functions  |         | office      |          |
|                 |                    |            | except office | except office  |         | functions   |          |
|                 |                    |            | functions     | functions      |         |             | 31       |





Figure 9 - From 3D automatic geometric reconstruction to semantic modelling. (left to right and top to bottom) Automatic 3D reconstruction from aerial images; Extraction of buildings; Zoomed view on a single building (approx. 5000 triangles); Construction of a polyhedral complex with extracted planar primitives; Building shape extraction from the complex; Semantic modelling of the building (red: roof, gray: walls, green: ground).









| 53          | 07                               |
|-------------|----------------------------------|
|             |                                  |
| ad hard 10  |                                  |
| A.R. MARK P |                                  |
| 0.0.0040.10 | N. M. M. M. M. M. M. M.          |
|             |                                  |
|             | THE REAL AND AND AND AND AND AND |
|             |                                  |

# ECODISTR-ICT Warsaw - LCC module

| Scenario                         | Description                                                                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. As is                         | - Existing<br>situation                                                                                                                              |
| 2. Energy<br>demand<br>reduction | <ul> <li>Energy demand</li> <li>reduction by</li> <li>insulating the</li> <li>building skin</li> <li>Energy efficient</li> <li>appliances</li> </ul> |
| 3. LTDH                          | - Scenario 2<br>measures<br>- Low<br>temperature<br>district heating                                                                                 |
| 4. All electric                  | - Individual Heat<br>pumps, energy<br>production                                                                                                     |
| 5. LTDH +<br>district<br>cooling | - Scenario 3<br>measures<br>- District cooling                                                                                                       |



## Warsaw - EPI Module

Warsaw

8

i





# ECODISTR-ICT Warsaw - Mobility module

|      | 1                     |                                  |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |
|------|-----------------------|----------------------------------|-------------|-------------------|------------------|------------|--------|------------------|-------------|-----------|------------|---|----------|---------------|--------------|-------------|------------|
| Meas | ures                  |                                  |             | OUTPUT            |                  |            | Graphs |                  |             |           |            |   |          |               |              |             |            |
|      |                       |                                  |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |
|      | Туроlоду              | Application                      | Y/N         | Private transport | Public transport | Slow modes |        | Ac Ic Evicti     | na cituati  | on - Ori  | igin       |   |          | To Bo I       | Dotontial    | - Origin    |            |
| 1    | Public transport      | Combine tram and bus             |             |                   |                  |            |        | AS IS LAISU      | ing situati | 011-011   | BIII       |   |          | IO DE I       | rotentiai    | - Ongin     |            |
|      |                       | infrastructure                   | Y           | -3,0%             | 3,0%             | 0,0%       |        |                  |             |           |            |   |          |               |              |             |            |
| 2    | Public transport      | Larger tram and bus vehicles up  |             |                   |                  |            |        |                  | 5,0%        |           |            |   |          |               | 7,0%         |             |            |
|      |                       | to max. 20% increase             | Y           | -1,0%             | 1,0%             | 0,0%       |        |                  |             |           |            |   |          |               |              |             |            |
| з    | Public transport      | Higher frequency tram and bus    |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       | services up to max. 20% increase | 2           |                   |                  |            |        | 27,475           |             |           |            |   |          |               |              | 42 7%       |            |
|      |                       | of tram and bus stop service.    | Υ           | -1,0%             | 1,0%             | 0,0%       |        |                  |             |           |            |   |          |               |              |             |            |
| 4    | Public transport      | Optimisation of bus routes       | γ           | -0,5%             | 0,5%             | 0,0%       |        |                  |             |           |            |   |          | 45.0%         |              |             |            |
| 5    | Public transport      | Modification of tram and bus     |             |                   |                  |            |        |                  |             | 67,6%     |            |   |          | 100           |              |             |            |
|      |                       | routes to connect to P&R         | γ           | -3,0%             | 3,0%             | 0,0%       |        |                  |             |           |            |   |          |               |              |             |            |
| 6    | Private transport     | Parking zone policy              | Y           | -2,8%             | 2,8%             | 0,0%       |        |                  |             |           |            |   |          |               |              |             |            |
| 7    | Private transport     | P&R                              | γ           | -5,0%             | 5,0%             | 0,0%       |        |                  |             |           |            |   |          |               |              |             |            |
| 8    | Traffic management    | Flex working                     | γ           | -2,7%             | -2,7%            | 0,0%       | = P    | vivate transport | Public tran | sport = S | slow mode: | s | Privat   | e transport   | Public tra   | nsport = Sk | ow mo      |
| 9    | Traffic management    | Promotion of public transport    |             |                   |                  |            |        | -                |             |           |            |   |          | -             |              |             |            |
|      | -                     | (employers paying for public     |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       | transport)                       | Y           | -5,0%             | 5,0%             | 0,0%       | A      | s Is Existing    | situation   | - Destir  | nation     |   | T        | ío Be Pot     | tential - D  | estinatio   | n          |
| 10   | Traffic management    | Mixed use planning               | Y           | -1,0%             | -1,0%            | 2,0%       |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       |                                  |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       |                                  |             |                   |                  |            |        |                  | 5,0%        |           |            |   |          |               | 7,0%         | 20.29       |            |
|      | AS IS                 |                                  |             |                   |                  |            |        |                  |             |           |            |   |          |               |              | 20,278      |            |
|      | Modal split           |                                  | Origin      | 67,6%             | 27,4%            | 5,0%       |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       |                                  | Destination | 45,1%             | 49,9%            | 5,0%       |        |                  |             | 45,1%     |            |   |          |               |              |             |            |
|      | TO BE                 |                                  |             |                   |                  |            |        | 49.9%            |             |           |            |   |          |               |              |             |            |
|      | Modal split potential |                                  | Origin      | 42,7%             | 45,0%            | 7,0%       |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       |                                  | Destination | 20,2%             | 67,5%            | 7,0%       |        |                  |             |           |            |   |          |               | 7.74         |             |            |
|      |                       |                                  |             |                   | · · · · ·        |            |        |                  |             |           |            |   |          |               | 7,5%         |             |            |
|      |                       |                                  |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |
|      |                       |                                  |             |                   |                  |            |        | rivate transport | Public tran | oort = S  | low moder  |   | Deiterst | te transacrit | Dublic tra   | ernert = Si | 0.W. (75.7 |
|      |                       |                                  |             |                   |                  |            |        |                  |             |           |            |   | - FINAD  | a compose     | - r conc tra | - aparc     | /w///i     |
|      |                       |                                  |             |                   |                  |            |        |                  |             |           |            |   |          |               |              |             |            |





#### **Renewal solutions**

- 1. Permeable car parking
- 2. Grass
- 3. Trees
- 4. Water
- 5. Green roofs
- 6. Permeable areas

## Warsaw - Design module

Warsaw

Energy label  $\times$ 

Warszawa Służewiec

S79 GYBERNEWKI

\$79

\$79

\$79

+

-

79

#### Low carbon heat supply options

Select measure to apply to objects of type: selection

District heating with CHP(at neighborhood scale) Ground source heating and cooling collective





MARYNARSKA MARYNARSKA

CYBERNETYKI CYBERNETYK

×

## **Database and module connections**





## System architecture











#### Ongoing work

- Calculations of results
- Calibration of MCMSMV
- Stakeholder workshop/management

Content

- Complexity of linking approach to calculations and output
- Data management
- Energy important but not the priority for stakeholders

Process

- A lot of time and budget in meetings with partners
- Handbook before instead of after process
- Communication
  - Visuals to be more simple
  - Clarity of steps in dashboard



- Wrap up of case studies
  - Warsaw
  - Antwerp
- Conference
  - Final conference 27<sup>th</sup> October in Antwerp
- Reporting
  - December 2016
- Follow up project



Supported by the European Union through its 7th Framework Programme



## THANK YOU FOR YOUR ATTENTION

Get connected

http://ecodistr-ict.eu/

info@ecodistr-ict.eu

Kevin.vervuurt@arup.com

