
2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low temperature district heat networks

M. Wahlroos*, M. Pärssinen, S. Rinne, J. Manner, S. Syri Aalto University, Department of Mechanical Engineering, Finland

4th Generation District Heating Technologies and Systems

Contents

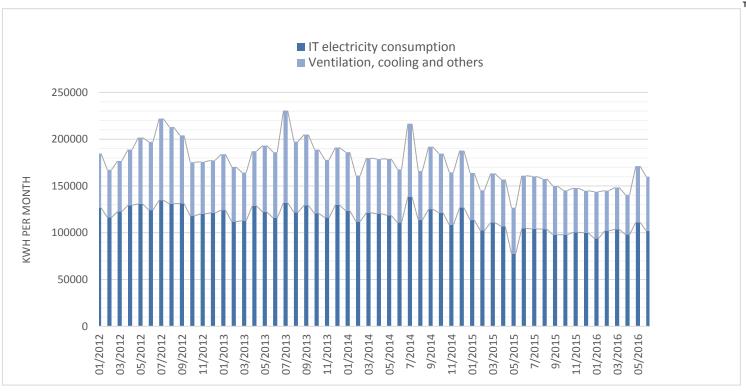
- Data centers in Nordic countries
- Energy consumption profiles of data centers
- Prospects for low temperature district heat networks
- Increasing amount of waste heat in Espoo DH network EnergyPro simulations
- Conclusions

Data centers in Nordic countries

- Why Nordic countries are attracting data centers?
 - Cold climate
 - Cheap electricity prices and high share of renewable electricity generation
 - High level of information security and know-how on the IT sector
 - Stable political environment
- What do data centers have to do with district heating?
 - Almost all of the consumed energy in data centers converts to heat which can be recovered
 - Waste heat temperatures typically low (in air cooled data centers 25-35 °C, liquid cooled data centers 50-60 °C), but heat pumps can be used to improve temperature
 - Due to high heat demand and diversified heat production portfolio waste heat can easily be utilized in DH and some data centers already supply waste heat to DH

Aims of the research

The main **barriers** for data center waste heat utilization are **waste heat quality** (temperature and timing), **profitability** and **business opportunities** for data center operators


We aim to answer following questions based on the main barriers:

- When is waste heat available from data centers?
- How low temperature waste heat could be utilized more efficiently in DH?
- How waste heat utilization would impact heat production in DH network?
- How pricing of waste heat affect its utilization in the network?

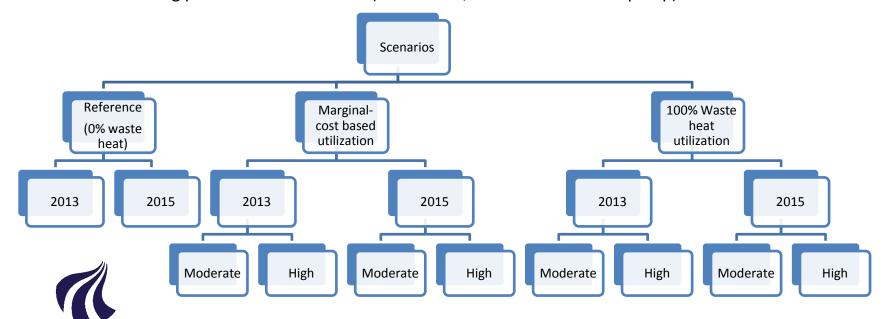
Monthly electricity consumption in a commercial data center

Production in a non-commercial data center

1 year production

1 week production

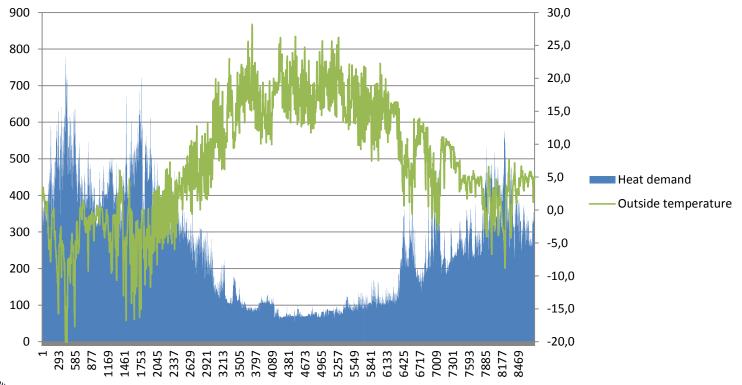
Prospects for low temperature district heat networks (LTDH)


- Low temperature district heat (LTDH) networks have the possibility of utilizing lower quality heat, which would increase the profitability of waste heat
 - LTDH networks could obtain supply water temperature of under 50 ^oC and return water temperature of 20 ^oC.
 - In these cases heat pumps might not be necessary to feed waste heat to DH network
 - LTDH networks could be effectively used even in smaller communities and as renewable small-scale heat is integrated to the system
- Thermal storages can be efficiently used to store the excess heat in the summertimes

EnergyPro-simulations

- We have used EnergyPro-software to simulate Espoo DH network based on the DH demand in year 2013 and 2015
- We take into account
 - Production costs (fuel prices, start-up costs etc.)
 - Electricity prices
 - Existing plants in 2013 and 2015 (3 CHP units, several HOBs + heat pump)

EnergyPro-simulations

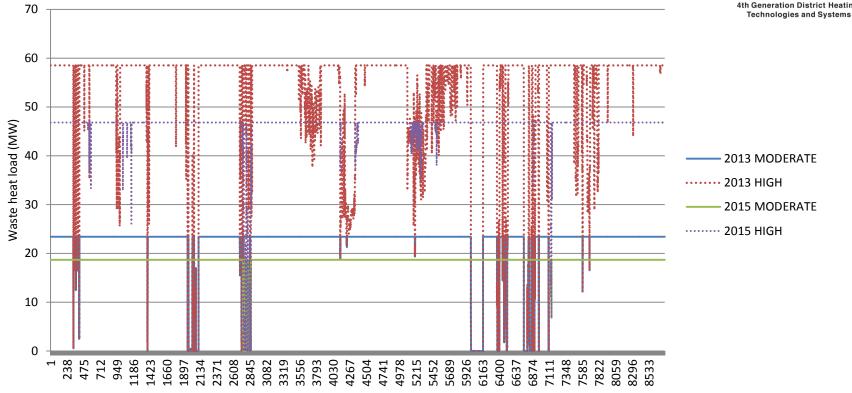


Scenario assumptions						
	Reference	Marginal cost based	100% Utilization			
Produced waste heat fed to DH network	0%	Depending on marginal production costs of the system	100%			
Cost of waste heat	-	Seasonal pricing (13,8-40,4€/MWh)	0€ (100% will be utilized regardless of the price)			
Amount of waste heat	_	Constant load 2013 – Moderate: 23,4MW 2013 – High: 58,5MW 2015 – Moderate: 18,7MW 2015 – High: 46,8MW	Monthly shifting load 2013 – Moderate: 20-28MW 2013 – High: 50-70MW 2015 – Moderate: 15-20MW 2015 – High: 38-50MW			

Simulated district heat demand in Espoo network in 2013

Preliminary modelling results

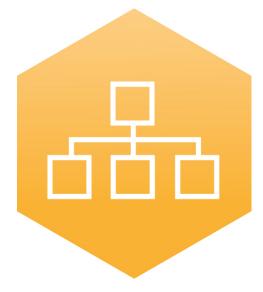
All scenarios

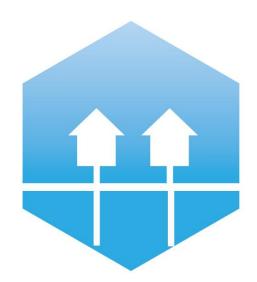

- In all of the scenarios increasing waste heat will decrease utilization of CHP plants
- Production in some of the heat-only boilers (HOBs) will increase
- Total operational costs will decrease when more waste heat will be utilized
- In 2015, electricity prices are lower but heat demand higher
- Marginal cost based scenarios
 - All of the heat won't be utilized on current pricing model
 - Waste heat would be "turned off" for short periods
 - In high scenarios waste heat will have less full-load hours

Savings compared to reference scenarios						
Marginal	2013		2015			
cost based scenarios	MODERATE	HIGH	MODERATE	HIGH		
Total production costs	-4,8 %	-9,8 %	-3,3 %	-9,6 %		
Profits from sold electricity	-8,1 %	-13,5 %	-5,4 %	-21,0 %		
Savings in total	-3,3 %	-8,1 %	-2,9 %	-7,5 %		

Waste heat utilization in marginal cost based scenarios

Conclusions


- Utilizing waste heat will have significant effects on the DH system
 - In a DH system with CHP and HOB, paying for waste heat may reduce CHP full-load hours
 - At high electricity prices CHP will be in full use and waste heat will not always be taken into the system
- We didn't consider how waste heat will affect the DH system temperatures
 - Priming of heat could be required depending on the waste heat temperature
 - If data center waste heat is lower quality it should be taken account in pricing structure and on the network system level
- Results indicate that utilization of waste heat is beneficial for the system, however business cases between data center operator and DH network operator need to be addressed.
 - Mutually good business models seems to be feasible, but pricing structure is highly important
 - Pricing structure on data center waste heat needs to be determined to fully exploit the benefits



2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

Thank you for your attention!

4th Generation District Heating Technologies and Systems