

The Potential for Power-to-Heat in the Swedish District Heating Systems

KARIN ERICSSON, GERALD SCHWEIGER, JONATAN RANTZER, PATRICK LAUENBURG, GREGOR ZAHRER

Context

- Limited interest for power-to-heat in Sweden so far
- Sweden has good conditions for integration of variable electricity production due to large capacity of storage hydropower
- Growing concern over future reliability of the electricity system
- Considerable expansion of wind power (almost fivefold increase since 2010)
- Possibly very high proportion of variable electricity in the future

The purpose

...was to estimate the future (~2050) technical potential of power-to-heat as a flexibility measure in Swedish district heating systems for different power scenarios and conditions.

Overview of method

- Design power scenarios
- Calculate the hourly power production and consumption for the scenarios
- Calculate hourly negative power residual ("surplus" electricity)
- Calculate hourly district heat load
- Calculate the power-to-heat potential by comparing the negative power residual and district heat load
- Repeat for different scenarios and restrictions

Important assumptions

- Unlimited electricity transmission
- We disregard other flexibility measures and export & import of electricity
- Electric boilers
- Installed capacity equal to 30% of the design heat load in each DH system
- District heating demand assumed to remain at level of 2014 (57 TWh)

Power scenarios ~2050

Electricity		Scenarios		
production and consumption	2015	Conservative	High Wind	High Wind & Solar
Nuclear power	54	55	0	0
Hydropower	74	65	65	65
Other thermal power (CHP, gas				
turbines)	13.5	15	15	15
Wind power	16.6	30	70	70
Solar power	0.1	5	5	20
Total production	158	170	155	170
Total consumption, including losses	136	140	140	140

Calculation of power residual

 $P_{res} = P_{cons} - (P_{wind} + P_{sol} + P_{nucl} + 0.5 \cdot P_{th} + P_{hyd_min})$

Annual negative power residual for the different scenarios [TWh]

Current	0.1
Conservative	2.1
High Wind	4.7
High Wind & Solar	11.1

Swedish hourly district heat load

- Aggregation of regional heat loads
- The hourly district heat load was calculated for different regions using linear correlation with outdoor temperature.

Power residual versus heat demand

Power-to-heat potential

About 60-90% of the power residuals.

Impact of access to heat storage (accumulation tanks)

- Accumulator with the capacity to store 25-250% of its mean daily demand
- Transfer capacity corresponding to 2.5-25% of its mean daily demand

Impact of priority to waste heat in the district heating supply

Priority to industrial waste heat and heat from waste incineration (27% of current production)

Conclusions

- Technical potential for power-to-heat was estimated to 3-8.5 TWh for scenarios with high proportion of wind and solar power production (75-90 TWh in total).
- Limited need and potential for power-to-heat in the conservative scenario.
- DH load is mainly a restriction in the High wind & solar scenario and especially if assuming priority for waste heat.

Reflections

- Simplified assumptions
- An opportunity that should be explored further.
- No business case for power to heat in Sweden today
- Future viability depends on how electricity prices and policies develop.
- Implement with care! The shutdown of CHP plants would be problematic at times with low variable electricity production.

Thank you!

Questions and feedback?

karin.ericsson@miljo.lth.se

