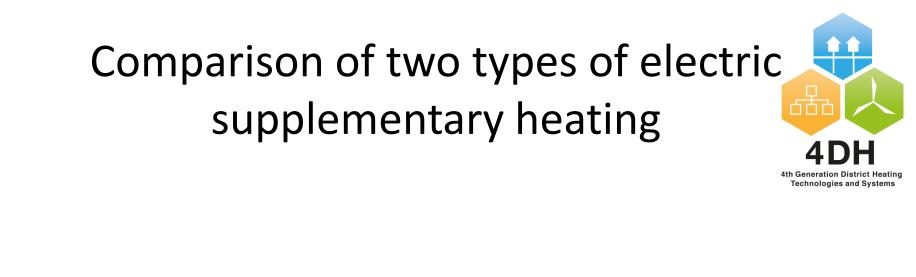
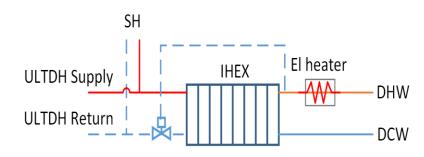
2nd International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 27-28 September 2016

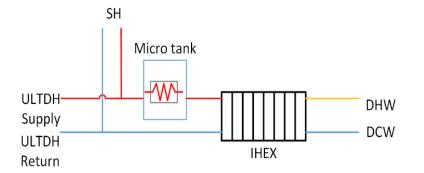
Different electric supplementary heating approaches for domestic hot water supply with ultra-lowtemperature district heating

Xiaochen Yang, xiay@byg.dtu.dk Hongwei Li Svend Svendsen Department of Civil Engineering, DTU


Background

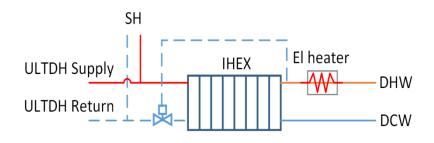


Reason


- Make utmost use of the low-temperature heat sources, realize ultra-low temperature district heating
- Applying situation
 - DH supply temperature is sufficient for comfort room temperature but not enough for DHW requirement(35<T<45-50 °C)
- Benefits
 - Remove the boundary of DH supply temperature
 - Increase the flexibility of the Electricity grid and Heat grid

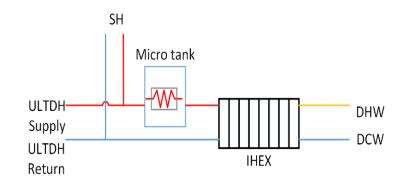
2. Electric micro tank

Comparison of two types of electr supplementary heating



- Main components
 - Instantaneous heat exchanger, in-line electric heater , bypass valve
- No water storage in the system
- Required power of the electric heater

Preheated water Temperature [°C]	30	35	40
Power [kW]	12.2	7.1	2.1



2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

1. Direct electric heating

Comparison of two types of electric supplementary heating

2. Electric micro tank

- Main components
 - Instantaneous heat
 exchanger, micro tank
 with electric heater

4th Generation District Heatin Technologies and Systems

- Small water storage on the primary side, but the power rate can be much smaller
- No bypass

Dimension of the micro tank with different supply temperatures

Design parameters (a	ccording to DS	439)							
Kitchen	1	5L	45°C						
shower	4	2L	40°C						
Set-point of the tank			90°C						
Time interval			20min						
Assuming the service pipe: AluFlex 16-16/110, length 10m, water content ~1L, electric tank power: 2.4kW									
Results									
DH scenarios [°C]	35	40	45						
Micro tank [L]	8.8	4.0	2.0						

Comparison of energy performance

4th Generation District Heating Technologies and Systems

 λ of the pipe :0.022 W/mK, ground T: 10 °C

SH SH Micro tank El heater IHEX **ULTDH** Supply \mathbb{W} ₩ ULTDH-DHW DHW Supply **ULTDH Return** DCW ULTDH DCW IHEX Return 35 40 45 DH scenarios 35 DH scenarios 40 45 Micro tank heat loss Bypass set-point 30 35 40 [W] [ref] 6.9 11.6 4.4 T [°C] Considering Primary 29.1 Bypass heat loss 20.0 24.5 28.9 17.3 10.9 [W] factor (2.5) [W] Average return Average return T[°C]18.8 18.8 18.8 T[°C] 23.2 26.1 29.4

([ref] Quooker energy analysis, 10W for a 7-liter storage)

Comparison of economy performance

SH

4th Generation District Heating

Technologies and Systems

DHW demand: 2000 kWh/year, assumed DH price: 0.8 DKK/kWh, assumed electricity price: 2.0 DKK/kWh

SH ULTDH Supply	IHEX	El hea		ULTDH Supply ULTDH Return			DHW DCW
DH scenarios	35	40	45	DH scenarios	35	40	45
Cost of electricity				Cost of electricity			
[DKK/kWh]	0.9	0.6	0.3	[DKK/kWh]	1.0	0.6	0.3
Cost of heat				Cost of heat			
[DKK/kWh]	0.5	0.7	0.8	[DKK/kWh]	0.5	0.6	0.7
Integrated Price				Integrated Price			
[DKK/kWh]	1.4	1.3	1.1	[DKK/kWh]	1.5	1.2	1.0
Investment	6949 DKK ^[Ref]		Investment [DKK] 6987 DKK [Ref]			l	
Refurbishment of power input	4000 [ОКК		[Ref] price from online sell	er		

Conclusion

- Ultra-low temperature district heating can be implemented with electric supplementary heating with acceptable economy
- Electric micro tank has better performance
 - lower heat loss
 - low average return temperature
 - lower energy (total)cost

Thank you for your attention!

Contact: Xiaochen Yang DTU BYG xiay@byg.dtu.dk

