International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

Is there room for renewables in 2030?

analysing the effects of a new nuclear power plant in Hungary

Fanni Sáfián ENERGIAKLUB | ELTE | Hungary

4th Generation District Heating Technologies and Systems

Introduction – Hungarian energy mix **ENERGIAKLUB 30 TWh prod. + 12 TWh imp. = 42 TWh total supply** CLIMATE POLICY INSTITUTE 4th Generation District Heating Technologies and Systems APPLIED COMMUNICATIONS **PP** capacities Gross electricity production 30 TWh (2013) 9000 8000 Oil & other Small PPs 7000 Other 16% RES 6000 large PPs (coal, ngas) 5000 Paks Coal 10% 4000 (nuclear) Mátra 3000 55% Nuclear (coal) 2000 19% Natural gas 1000

About the Paks II project

- 14-01-2014: Rosatom builds new nuclear PP in Paks
- 2400 MW, 12,5 billion EUR (10 bill EUR Russian loan)
- No tender, no background analyses available, contracts are secret for 30 years
- Economics: not feasible (Romhányi 2014, Felsmann 2015)
- Fixing centralised system, hindering RES and EE?
- Between 2026-2032 4400 MW nuclear capacity working together (Paks I + Paks II)

DENMARK

BORG UNIVERSITY

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

ENERGIAKLUB's Energy Vision

- Decentralised energy system, small-scaled units
- Use of local renewable energy sources
- Sufficiency and Efficiency are fundamental aims
- Opportunity for community energy production
- Provide complex solutions through local economical and societal benefits

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

SHALLAND + VINNI

3 models compared

		EK2030	MAVIR	HYBRID
Nuclear capacity	MW	2 000	4 400	4 400
Wind	MW	2 800	850	2 800
Solar	MW	1 400	90	1 400
New peak PP	MW	500	1200	1200
Total capacity	MW	12 008	10 840	14 100
Electricity demand	TWh	47,1	47,1	47,1

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

Main results

ENERGIAKLUB CLIMATE POLICY INSTITUTE APPLIED COMMUNICATIONS

		EK2030		HVPPID
		LK2030		
Fuel Total	TWh	252,18	272,91	268,67
RES PES share	%	13,40	6,90	8,60
RES electr. share	%	27,10	10,30	22,20
Import	TWh	0,47	0	0
Export	TWh	0,02	0,53	2,35
CO ₂ corr.	Mt	40,79	35,2	31,68

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

What happens in details?

DENMARK

ENERGIAKLUB CLIMATE POLICY INSTITUTE

MAVIR at maximum wind power production

Hypothesis 1: CEEP appears when wind production

4th Generation District Heating, Copenhagen, 25-26 August 2015

4th Generation District Heating

Technologies and Systems

What happens in details? **ENERGIAKLUB** CLIMATE POLICY INSTITUTE 4th Generation District Heating EK2030 at maximum wind power production **Technologies and Systems** APPLIED COMMUNICATIONS 7000 6000 5000 4000 3000 2000 1000 0 1 2 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 3 9 4 5 6 ■ Nuclear ■ CHP Wind Hydro PV PP2 ■ Geother. ■ Import □ CEEP PP International Conference on Smart Energy Systems and AALBORG UNIVERSITY

4th Generation District Heating, Copenhagen, 25-26 August 2015

DENMARK

What happens in details?

MAVIR at maximum CEEP

Hypothesis 2: CEEP appears when electricity

4th Generation District Heating

Technologies and Systems

What happens in details?

Possible solutions – 3+1 ways

- A. Regulation of CHP, PP and PP2 (current) Problem: shutting down power plants
- **B.** Regulation of nuclear power plant Problem: not feasible investment
- C. Regulation of RES Problem: answers our main question
- D. Export excess electricity Problem: there is night at neighbours as well

DENMARK

Conclusions

- The new nuclear power plant is too large for the current/future Hungarian energy system
- The regulation method of the energy system is unknown for 6 years – not only renewable energy production, but all power plants are endangered
- Utilization of local energy sources, renewables, energy efficiency investments etc. will be hindered for 60-80 years

THANK YOU FOR YOUR ATTENTION!

TT

safian@energiaklub.hu