
International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

> The impact of policies in the building sector influence the economic feasibility of district heating

Presenter: Sara Fritz

4th Generation District Heating Technologies and Systems

AALBORG UNIVERSITY

DENMARK

Agenda

- Motivation
- Research Question
- Methodology
- Case Study
- Conclusion

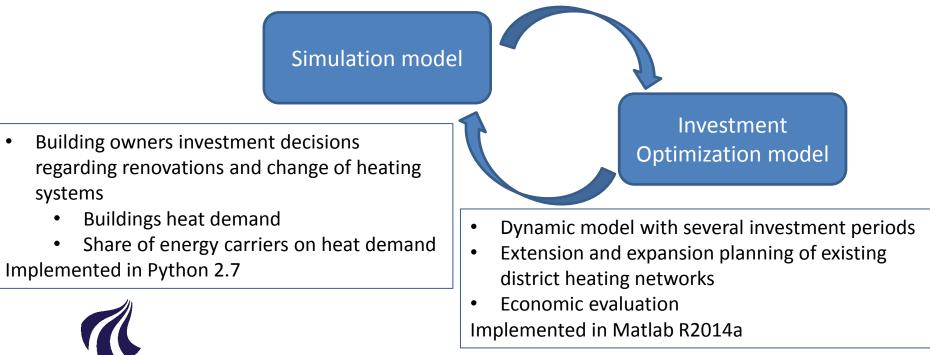
Motivation

- 37.7 % of the final energy consumption rises from space heating and air conditioning¹
- 47.4 % of Vienna's building stock is older than 50 years²
 - Higher renovation rates and change of heating systems can contribute to reach European 20/20/20 targets

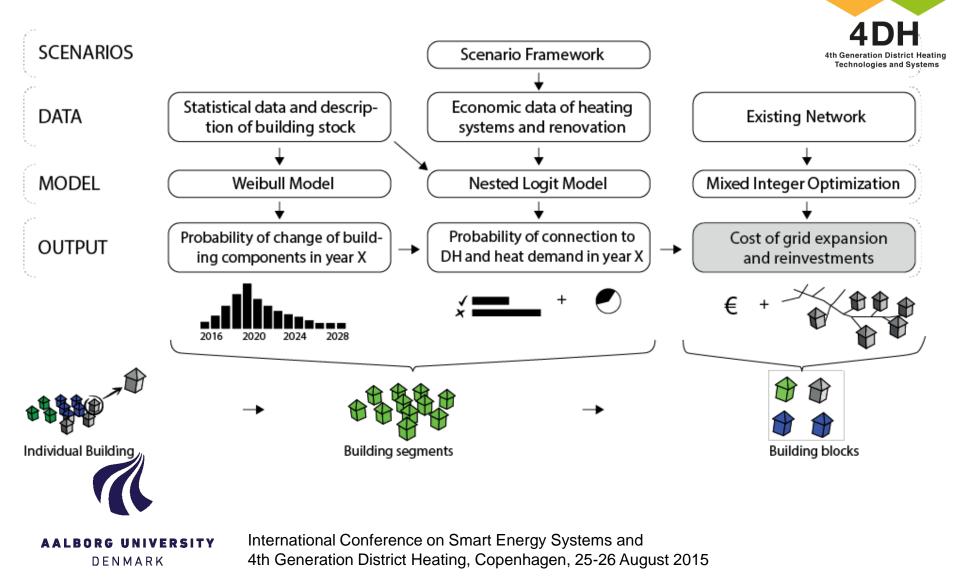
- 1) Source: Statistik Austria. "Energetischer Endverbrauch 1993 Bis 2013 Nach Energieträgern Und Nutzenergiekategorien Für Wien (Detailinformation)," December 12, 2014
- 2) Statistik Austria. "Gebäude 2011 Nach Dem Errichtungsjahr (Bauperiode) Des Gebäudes Und Politischen Bezirken," April 12, 2013.

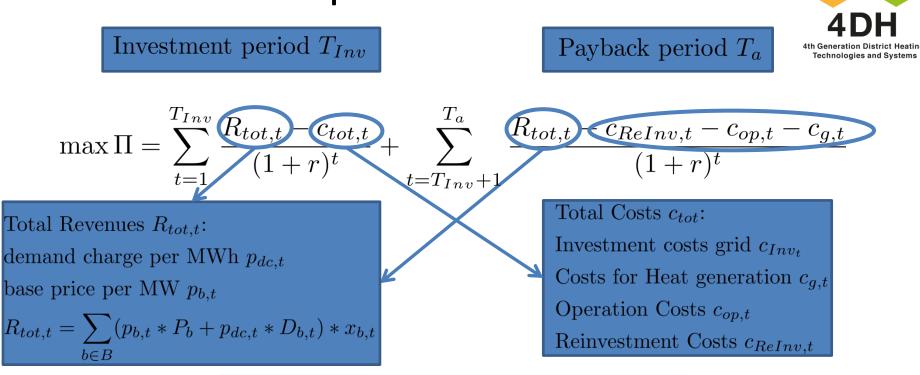
ALBORG UNIVERSITY International C DENMARK 4th Generation

Research Question


- Building owners decide about investments for renovation and change of heating systems
- District heating can provide an ecological and economic way to supply heat demand
- How do policies change the buildings heat demand for space heating and domestic hot water up to 2045?
- What are the consequences for the economic feasibility of the existing district heating network?

Methodology


 Integrated analysis of the development of the buildings heat demand and the supply of it with district heating



Methodology

占古

Methodology: Investment Optimization

- $x_{b,t} = \begin{cases} 1, & \text{if block } b \text{ is connected in period } t \\ 0, & \text{else} \end{cases}$ $D_{b,t}... \text{ Demand of building b at time t}$
 - ... disounct rate

r

DENMARK

Case Study

- Policy analysis in the building sector
 - Subsidies for renovation can increase renovation rate and decrease heat demand up to 2045
 - Obligations to connect to district heating network can increase share of district heating on total heat demand (obligations scenario)
 - If change of heating system is necessary, building owners has to invest in district heating
 - District heating network operator can decide, if connection is economic viable

Case Study

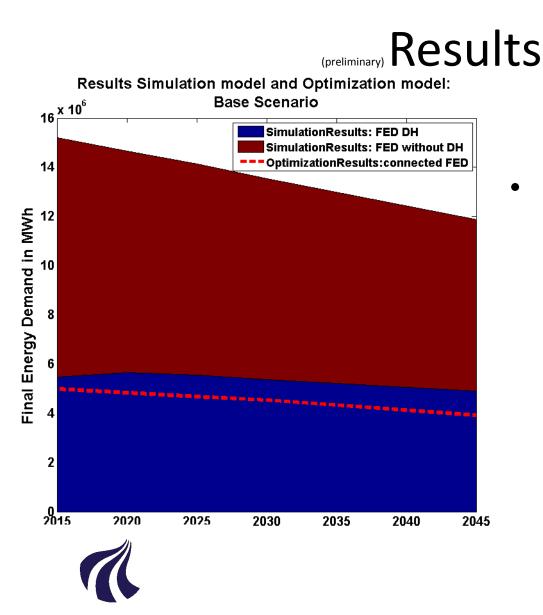
Vienna:

- 165 000 Buildings / 150 000 residential buildings in 2011¹
- 1 192 km District heating network in 2013², market share 35 %²
 - 3300 connected blocks³ (Total: 9400 blocks)

Installed capacities heat generation⁴:

- 242 MW incineration plants
- 37 MW biomass CHP

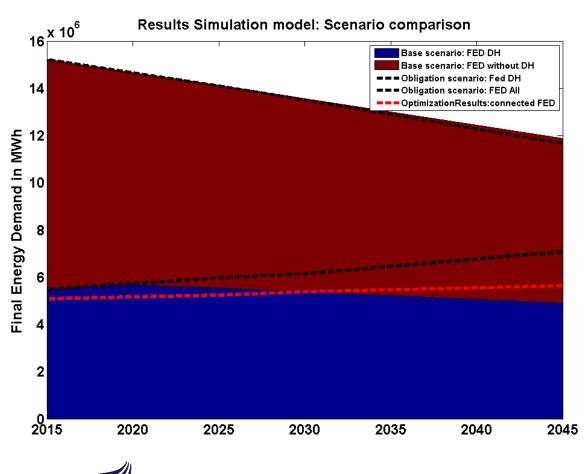
- 173 MW waste heat from industry
- 1370 MW fossil fuel power generation (CHP)
- 1464 MW fossil fuel sites


Current installed capacities are maintained over whole simulation horizon

Source: Statistik Austria. "Registerzählung 2011: Ergebnisse Im Überblick: Gebäude 1971 Bis 2011," April 12, 2013.
 Source: http://www.nachhaltigkeit.wienerstadtwerke.at/oekologie/energieerzeugung-bereitstellung/fernwaerme.html.
 Source: own assignment based on Information of "Wiener Stadtwerke" (public utilities company in Vienna)

4) Source: own assignment based on information of "Wiener Stadtwerke" (public utilities company in Vienna)
 4) Source: own assignment based on Information of "Wiener Stadtwerke" (public utilities company in Vienna)

ALBORG UNIVERSITY I DENMARK 2



- Final Energy Demand
 (FED) for District Heating
 (DH) decrease not as fast
 as overall FED
 - Reason: Change of heating system for building stock and new buildings
 - 85.91 % of FED DH actually connected in 2045 by district heating operator

ALBORG UNIVERSITY DENMARK

(preliminary) Results

- Reduction of FED by 2.66 % in comparison to base scenario
- Increase of FED for District heating up to 2045: 55.03 %
 - But: Just 79.59 % instead of 85.91 % of the possible FED DH are connected by district heating operator

AALBORG UNIVERSITY Denmark

(preliminary) Results

District heating Operator

 $\operatorname{Profit}_{\operatorname{obligations}}$ = 1.18 $\overline{\text{Profit}}_{\text{Base}}$

Profit includes

Revenues (+)

•

- Costs (Re-) investments
- Costs heat generation
- **Costs** operation

Building sector

 $\frac{Costs_{obligations}}{1.02} = 1.02$ $\overline{\mathrm{Costs}}_{\mathrm{Base}}$

Costs include Investments **Operation costs** heating systems heating systems Investments **Energy costs** ٠ renovations **Construction costs** • new buildings

Absolute: Building sector: 5.524*10⁶ € higher Costs

Absolute: DH Operator: 2.057 *10⁶ € higher Revenues

Additional reduction of CO_2 – Emissions for obligations scenario: Up to **4.88 %** in 2045¹

> 1) Assuming CO₂-Emission factor District heating: 0.221 kg/kWh

AALBORG UNIVERSITY DENMARK

Conclusion

• Obligations to connect to district heating network, if investments in heating systems are necessary, can increase the economic potential of DH by **43.63** %

– But: market share district heating still just 53.64 %

- Additional reduction of CO₂-emissions possible (4.88 %)
- Problem: The costs, considering the demand side and supply with district heating are 2.5 higher.
 - Subsidies for building owners are necessary to contribute to an affordable heat supply

Thank you for your attention!

Questions / Discussion

Sara Fritz

TU Wien / Energy Economics Group

+43 1 58801 370381

fritz@eeg.tuwien.ac.at

