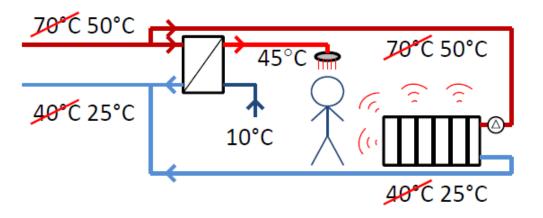


MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING

MAKSYM KOTENKO


PHD FELLOW, DEPARTMENT OF ENERGY TECHNOLOGY

LTDH Concept

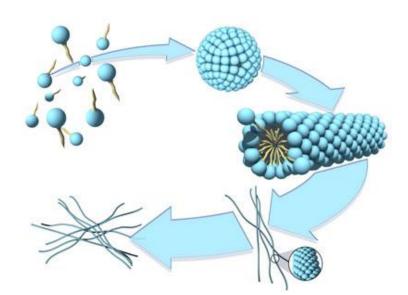
Supply temperature in DH has decreased. Categorised as:

- 1 st generation district heating STEAM
- 2 nd generation HIGH TEMPERATURE WATER 120°C
- 3 rd generation MEDIUM TEMPERATURE WATER 80°C
- 4 th generation LOW TEMPERATURE WATER 50 °C

MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING - PAGE 2 - 25.08.2015

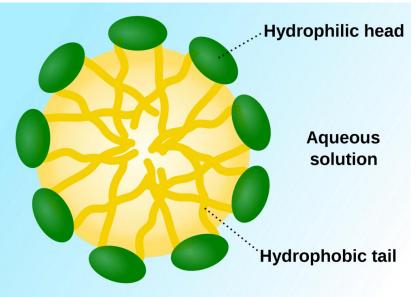
Objectives

- Development of measures for optimization of the heating system. E.g. drag reducing additives, pulse operation, local temp. boosting by heat pump, new materials of pipes and insulation.
- The creation of a mathematical model based on real case. Investigation of the actual thermal and hydraulic regimes of the heating system.
- Simulation and investigation of the system performance including suggested measures on the basis of created model
- Determination of the energy and economic benefits after the introduction of measures aimed to optimize heat supply system.


MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING – PAGE 3 – 25.08.2015

Sub objectives

- Optimization of the operation of the DH supply;
- New materials with lower surface roughness, better insulation and flexibility;
- Local temperature boosting by heat pumps or electric boilers;
- Drag reducing additives which can reduce the pressure losses in the distribution system or alternatively used for increasing the flowrate in systems with low supply temperature for maintaining the same amount of heat.


MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING – PAGE 4 – 25.08.2015

Drag Reducing Additives

After break can reform in comparison with usual polymers Surfactant molecules dispersed in a liquid are called micelles.

- Wormlike micelles
- Spherical micelles

(MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING – PAGE 5 – 25.08.2015

How does DRA work?

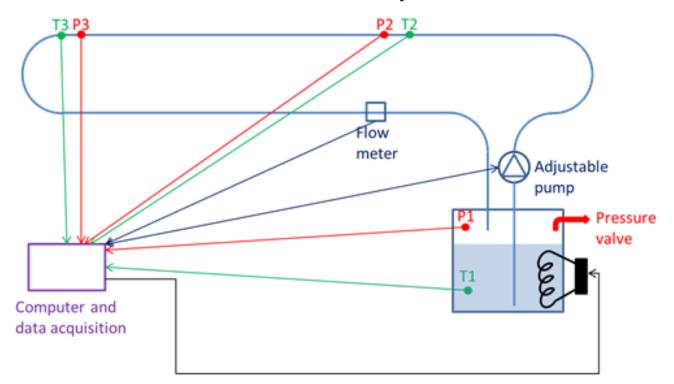
This interaction is complex; the long chain molecules dampen turbulent bursts near the pipe wall

Hence due to different obstacles, long chains can be destroyed and DRA will not work so well.

	ト)つつ Fluid Flow —) () eline without DRA	
ں ⊤ں	rbulent Structure			
	A Polymer	æ		
1	ں در	Pi) 🥟 🤿 peline with DRA	
	Fluid Flow —			

(EDIT IN MASTER) PRESENTATION TITAL - PAGE 6 - DATE

DEPARTMENT/UNIT AALBORG UNIVERSITET


Reference cases

Object	Operating hours per year	Benefit
Home for the aged (5.5 kW , 2*1.5 kW)	8760	39%
Hotel1 (15 kW)	8000	49%
Hotel2 (11 kW, 7,5 kW)	2000	48%

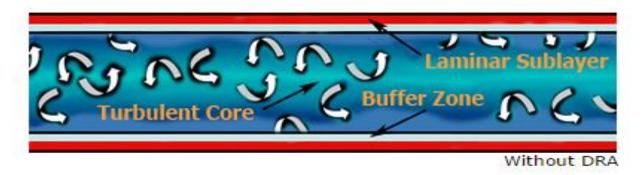
MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING – PAGE 7 – 25.08.2015

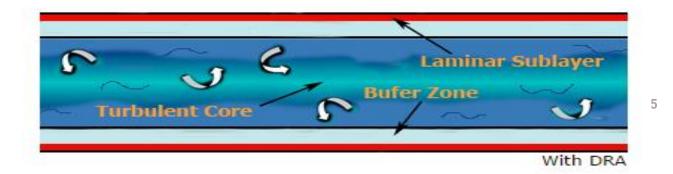
Test rig

Schematic illustration of the test facility at Aarhus University

MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING - PAGE 8 - 25.08.2015

Partners and schedule of DRA testing


Person	Company
Mogens Hinge	Aarhus University
Kate Wick-Hansen	Dansk Fjernvarme
Flemming Hammer	COWI
Jesper Breuning	Provectas


Duration	Tasks
1 st -2 nd week	Final setup of the test rig
3 rd -11 th week	First tests of clean water with diff. temperature and flowrates
12 th -24 th week	Broad DRA testing
24 th week	Status seminar and report
25 th week	Narrowing down DRA candidates

MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING – PAGE 9 – 25.08.2015

Desirable outcomes of DRA testing

- Up to 80% reduction in pump energy consumption
- Low DRA efficiency reduction in heat exchanger
- Increased flowrate using the same pump energy consumption
- Less turbulent flow will cause less heat losses

Conclusions

- Make 4th gen district heating more easily accessible and financially attractive
- Decrease energy consumption and reduce heat losses of distribution systems from approximately 20% to 10% of the produced heat
- Development of algorithm and procedure for evaluation of energy saving measures.

MINIMIZATION OF LOSSES IN LOW TEMPERATURE DISTRICT HEATING – PAGE 11 – 25.08.2015

AALBORG UNIVERSITY DENMARK