

River water heat pumps for district heat supply in large cities in Austria

Study of potential and techno-economic optimization

Veronika Wilk Bernd Windholz Michael Hartl Thomas Fleckl

Veronika Wilk | Scientist | Energy | Sustainable Thermal Energy Systems

River water heat pumps in Austria

- surface water = sources of ambient heat
- sea water heat pumps in Drammen (Norway)

Simulation: boundary conditions

Simulation: boundary conditions

River water as heat source: temperature

Heat demand in district heating grids

Simulation: 650 scenarios

Simulation results

- 650 different versions to design the heat pump systems (condensation temperature, slip stream and temperature difference)
- how to find the best scenario for each city?
- seasonal performance factor (SPF) of the heat pump

9

River A: highest seasonal performance factor

River B: highest seasonal performance factor

10

11

River C: highest seasonal performance factor

Highest seasonal performance factor

- most efficient operation of the heat pump
- base load only
- condensation temperature of 65 °C sufficient
- state-of-the art scenario
- no operation in winter because of icing at the evaporator

Range of SPF

A: 2.3 – 3.4

B: 2.4 – 3.4

Evaluation of results

- comparison to the backup system
 - gas boiler
 - electric heater

- environmental aspects
 - CO₂ emissions
- economic aspects
 - investment and operation costs

Highest CO₂ emission reduction

- CO₂ emissions calculated according to EN15601
 - natural gas: 277 g/kWh
 - electricity: 617 g/kWh (European electricity mixture)
- SPF > 2.2 to allow for CO_2 emission reduction

River A: highest CO₂ emission reduction

River B: highest CO₂ emission reduction

99 % of the district heating demand

River C: highest CO₂ emission reduction

Maximum CO₂ emission reduction

Gas boiler

- all scenarios allow for CO₂ emission reductions
- maximum in all cities at T_{cond} = 105 °C
- T_{cond} > 105 °C: CO₂ emission reduction decreases slightly because of SPF

Economic aspects

Gas boiler

- investment costs:
 - gas boiler: 20 €/kW heating capacity
 - heat pump: 250 400 €/kW heating capacity
 - without river intake structure
 - without district heating infrastructure
- operation costs:
 - ratio of electricity and gas prices: 1 ... 3.5

Maximum savings

Development of relative cost reduction with time

21

Conclusions

- base load scenarios with T_{cond} = 65 °C allow for high SPF and are more economic
- high shares of heat pumps in the district heating grid require low electricity prices (or high gas prices)
- $T_{cond} = 105$ °C is sufficient to achieve maximum CO₂ emission reductions
- rivers are suitable ambient heat sources for heat pumps in alpine regions
- icing at the evaporator is a major concern that requires control strategies

AIT Austrian Institute of Technology

your ingenious partner

Veronika Wilk veronika.wilk@ait.ac.at

River water as heat source: volume flow

Supply temperature in district heating grids

Comparison of different CO₂ factors

Austria 2013: Gas = 225 g/kWh, electricity = 281 g/kWh (ref: Gemis) Austria 2030: Gas = 225 g/kWh, electricity = 126 g/kWh (ref: EU Energy trends 2050)

Variation of investment cost

at maximum cost savings after 10 years of operation

Economic aspects

Gas boiler

- base load scenarios economically feasible at ratios of electricity and gas price ≈ 2
- significant shares of heat pumps economically feasible
 - Iow electricity prices (surplus energy?)
 - high gas prices (political situation?)
- lower investment costs allow for larger investments
 - learning curve

Comparison to electric heater as a backup system

Economic aspects

Electric heater

- Investment costs:
 - Electric heater: 60 €/kW heating capacity (electrode boiler)
 - Heat pump: 300 €/kW heating capacity
 - without river intake structure
 - without district heating infrastructure
- Operation costs:
 - electricity price: 1 ... 11 ct/kWh

Maximum CO₂ emission reduction

Electric heater

- all scenarios allow for CO₂ emission reductions
- reductions significantly higher compared to gas boiler
- maximum at $T_{cond} = 135 \ ^{\circ}C$ (city A and B) and 120 $^{\circ}C$ (city C)

Maximum cost reduction

32

Development of relative cost reduction with time

Economic aspects

Electric heater

- low investment costs of the electric heater
- heat pump significantly more efficient during operation
- cumulated costs of the heat pump lower than of the electric heater after 4 years of operation at the latest