
International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen. 25-26 August 2015

Reducing CO₂ emissions and increasing the integration of renewables through the utilization of smart district heating system in the City of Velika Gorica

AALBORG UNIVERSITY DENMARK 4th Generation District Heating Technologies and Systems

4DH

Index

- Current situation
- Thermal demand and mapping
- Solar and biomass resources
- Solar technologies
- Solar energy
 - Residential scale
 - Preheating district heating scale
 - Seasonal storage district heating scale
- Recommendations for future

SMART ENERGY SYSTEMS

- Smart phones
- Smart appliances (e.g. smart TV)
- Smart buildings
- Smart grids, smart thermal grids, smart gas ...
- Smart energy systems
- Smart cars
- Smart cities

WHAT ABOUT:

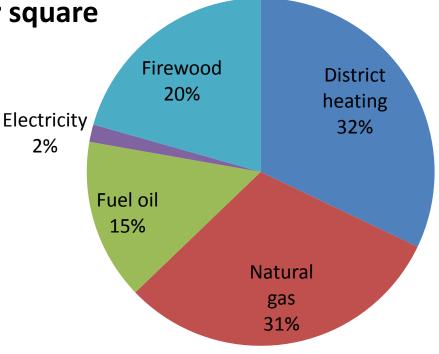
Smart governments? Smart politicians? Smart companies? Smart consumers? Smart people? Smart society?

The long-term Objective of Danish Energy Policy

Expressed by former Prime Minister Anders Fogh Rasmussen in his opening speech to the Parliament in 2006 and in several political agreements since then:

To convert to 100% Renewable Energy

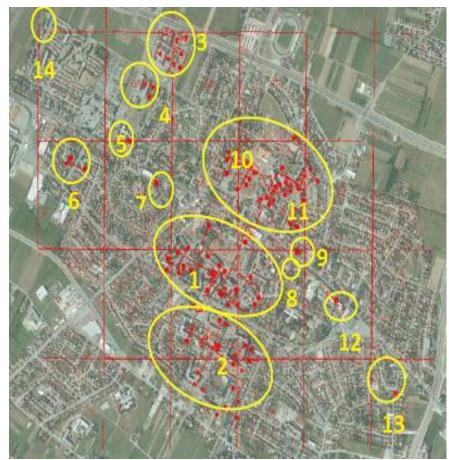
Prime minister 16 November 2008: "... position Denmark in the heart of green growth"


Prime minister 16 November 2008: "We will free Denmark totally from fossil fuels like oil, coal and gas"

2025

dansk

City of Velika Gorica


- Sixth largest city in Croatia
- Population: 63517. Area: 329 km²
- Urban area: 31.4 km². Population: 31553
- Density: 1004 inhabitants per square kilometre
- Total heat consumption in 2008 (SEAP): 197.34 GWh

Current situation

- 14 heating plants and 34 boilers
- 63.3 GWh heat produced.
 60.76% gas operated.
 39.24% fuel oil operated

Number	Address	P installed (MW)	%
1	M.Magdalenica 3	0	0.00%
2	Vidriceva 1	35.61	60.76%
3	J.Dobrile 40a	3.52	6.01%
3	Domjaniceva 3	2.16	3.69%
4	J. Dobrile 8	1.89	3.22%
5	Zagrebacka 126	1.15	1.96%
7	Zagrebacka 71	0.45	0.77%
8	Zagrebacka 19	0.26	0.44%
9	Zagrebcka 12	0.11	0.19%
10	CV naselje 10	2.76	4.71%
11	Zvonimirova 9	6.93	11.82%
12	Trg k.tomislava 34	1.28	2.18%
13	E. laszowskos 35	0.49	0.84%
14	Sibenska	2	3.41%

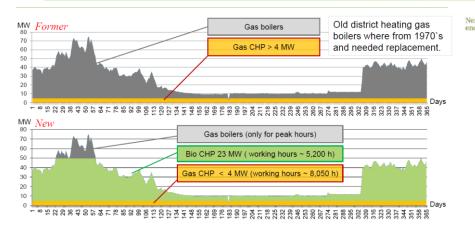
AALBORG UNIVERSITY DENMARK

A

Velika Gorica vs Jelgava

COGEN Europe Awards recognise

innovation in EU CHp sector

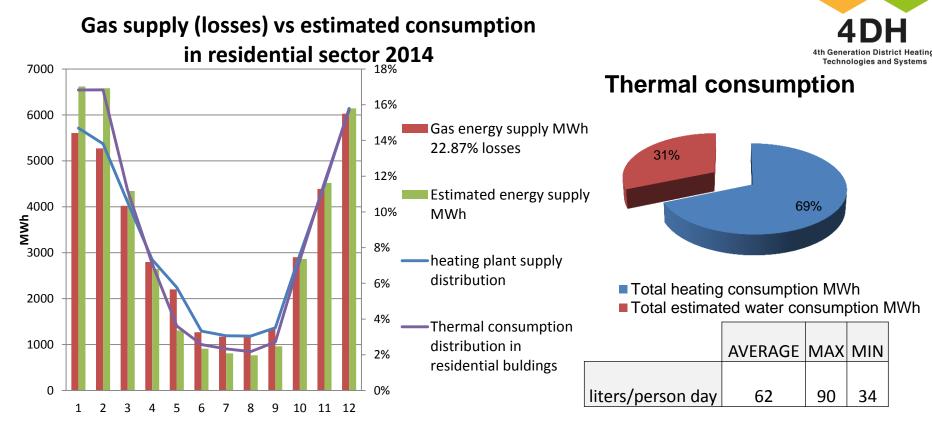

(63517 ppl.

64 279 ppl.)

Fortum's biomass CHP plant in Jelgava

Technical indicators:

- Fuel power 77 MW_{fuel}
- District heat capacity 45 MW_{heat}
- Electricity capacity 23 MWe
- Estimated DH produced 220 GWh
- Generated backpressure electricity 110 GWh
- Boiler type bubbling fluidized bed boiler technology that allows to utilize lower quality wood chips
- Type of wood chips wood residues and clearings of agricultural lands
- Fuel consumption per year 400 000 MWh wood chips
- Fuel supply around 6 thousand trucks per year
- See video about Jelgava Bio CHP at: http://voutu.be/J35wleC3dv0



www.beastproject.eu

Thermal demand

- Estimated with data from Vidriceva 1 gas operated power plant
- Distribution loses and a high specific heating consumption of roughly 200 kWh/m²

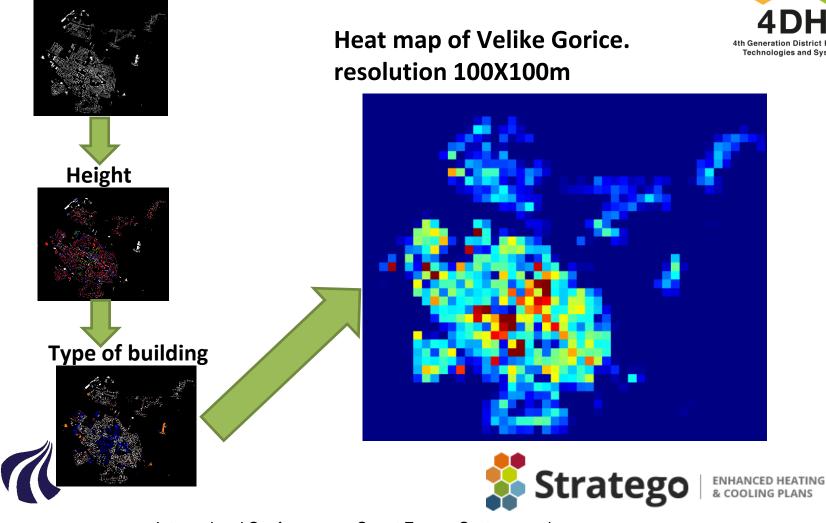
International Conference on Smart Energy Systems and 4th Generation District Heating. Copenhagen. 25-26 August 2015

BORG UNIVERSITY

DENMARK

Heat mapping

- Geoportal locations and surface areas of structures
- Height (number of floors)
- Type of building


ALBORG UNIVERSITY Denmark International Conference on Smart Energy Systems and 4th Generation District Heating. Copenhagen. 25-26 August 2015

Stratego

Heat mapping

Matrix (1.36X1.36m)

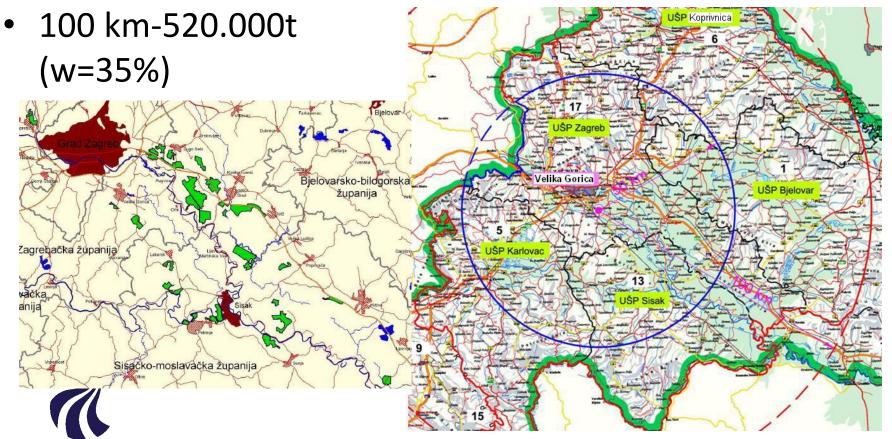
ADH th Generation District Heating Technologies and Systems

AALBORG UNIVERSITY DENMARK

Solar resources

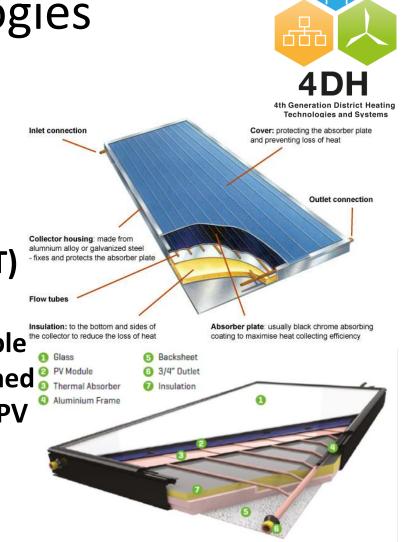
- Irradiance in W/m² in a tilted surface of 34°
- Global radiation of 1364 kWh/m² in a tilted surface of 34°

Н	our.	January	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sept	Oct	Nov	Dec
	6	0.00	0.00	0.03	9.67	43.84	54.33	46.94	19.87	1.43	0.00	0.00	0.00
	7	0.00	0.04	19.45	90.23	171.77	160.97	154.35	127.94	66.47	10.48	0.03	0.00
	8	0.65	26.43	143.81	221.43	323.45	296.47	318.94	297.29	184.63	119.29	25.80	0.52
	9	107.94	144.18	292.00	355.60	457.52	436.20	475.23	469.35	316.33	237.13	105.33	62.84
	10	188.68	277.21	390.61	462.10	586.74	567.63	609.97	610.26	413.53	330.81	158.63	138.35
	11	256.90	386.29	464.23	563.47	682.45	661.93	733.35	715.71	471.20	400.39	214.50	173.97
	12	294.48	413.14	505.58	606.17	655.23	689.10	651.32	679.19	511.23	442.71	258.97	201.84
	13	262.03	392.82	520.81	556.27	679.68	694.03	682.87	645.03	513.97	430.77	263.53	186.77
	14	293.52	456.32	505.00	521.30	601.84	626.20	627.29	584.84	488.67	433.26	300.40	226.03
	15	239.19	397.96	394.65	446.47	509.45	531.43	557.52	494.32	407.87	345.29	235.37	168.52
	16	129.58	255.32	273.42	324.33	393.84	406.17	415.65	383.65	261.73	194.68	115.47	78.13
	17	2.48	113.79	154.29	204.63	254.23	272.50	284.68	239.03	142.53	61.13	0.80	0.00
	18	0.00	1.36	28.26	80.67	119.19	142.23	143.23	106.29	34.50	0.45	0.00	0.00
	19	0.00	0.00	0.10	6.67	29.00	49.97	46.29	17.03	0.47	0.00	0.00	0.00


DENMARK

Biomass resources

• 50 km -200.000 t



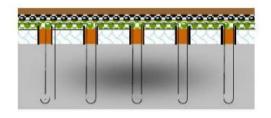
AALBORG UNIVERSITY DENMARK

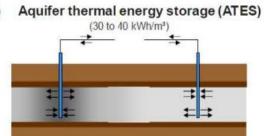
Solar technologies

- Solar thermal collectors
 - + Developed technology. roof mounted. widely use
 - Requires big portion of land
- Photovoltaic thermal system (PVT)
 - + Co-generation of thermal and
 electrical energy. saves space. feasible
 depends on electricity price. combined
 advantages from solar thermal and PV
 - Lower performance than thermal collectors

Storage technology

- Seasonal storage
 - + improve control for some technologies. reduces
 mismatch between supply and demand. storage
 materials low cost
 Tank thermal energy storage (TTES)
 - Heat losses.
 - some technologies still in developing. needed big surfaces.
 - Lake storage


discarded

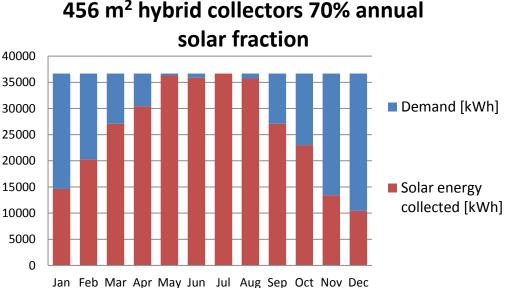


International Conference on Smart Energy Systems and 4th Generation District Heating. Copenhagen. 25-26 August 2015

Tank thermal energy storage (TTES) (60 to 80 kWh/m³)

Borehole thermal energy storage (BTES) (15 to 30 kWh/m³)

(60 to 80 kWh/m3)



Residential scale solar energy

- Model for residential buildings not conected to DH
- *f*-chart method of Klein and Beckman. results of many numerical experiments are correlated
- Provides a means for estimating the fraction of a total thermal load (Domestic Hot Water) that will be supplied by solar energy
- Example building J.
 Dobrile 18-24. 36667
 kWh → 346 people
- Hybrid collector (Ecomesh) and thermal collector (Eborx Eco Classic 2.0) have been compared

BORG UNIVERSITY

DENMARK

Residential scale solar energy

- Compared with gas.
- With electricity and fuel oil Payback lower than 5 year in both technologies.

											Grant	: 40%
	Surface	SF	Payback	PV [25]	n_coll	Q_col	P_e	Investment	Investment / person	Solar cost	Payback	PV [25]
	[m2]	[%]	[years]	[€]	[%]	[KWh/m2]	[kWhe/m2]	[€]	[€/p]	[€/kWh]	[years]	[€]
	296.66	0.5034	15.78	167661	0.6615	746.64	153.6	268441	775.84	0.05759	9.47	274800
hybrid	374.9	0.6088	16.84	197046	0.6379	714.52	153.6	339239	980.46	0.06018	10.10	332442
	456.4	0.7065	18.8	221131	0.6134	681.12	153.6	412986	1193.60	0.06313	11.28	385960
	n	Surface	SF	Payback	PV [25]	n_coll	Q_col	Investment	Investment /person	Solar cost	Payback	PV [25]
		[m2]	[%]	[years]	[€]	[%]	[KWh/m2]	[€]	[€/p]	[€/kWh]	[years]	[€]
lal	145	263.61	50.98%	11.57	146721	62.52%	850.9	129229	373	0.0419	6.94	198413
Thermal	180	327.24	60.75%	12.05	168414	60.02%	816.8	160422	464	0.04365	7.23	232583
Ţ	220	399.96	70.71%	12.65	186693	57.16%	777.9	196071	567	0.04583	7.59	265122
	11											

Solar cost lower than 0.046 €/KWh (Current natural gas price in 2014, Eurostat)

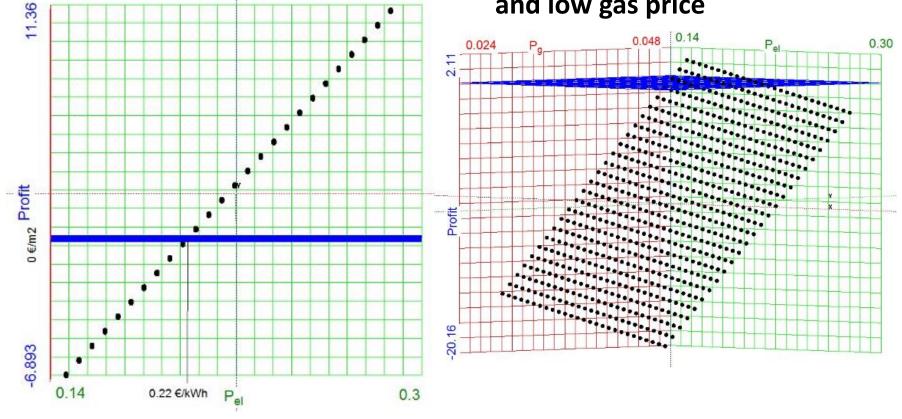
AALBORG UNIVERSITY DENMARK International Conference on Smart Energy Systems and 4th Generation District Heating. Copenhagen. 25-26 August 2015

C + 400/

Solar energy for DH - Preheating

- Model with hourly values for a typical day.
- Different collectors have been compared

	Z	Csolar	PV 25 years
Collector	€/m² year	€/kWh	[€/m²]
Ecomesh	61.41	0.06135	310.1
Powetherm	43.51	0.07688	29.05
M-240 PVT	91.48	0.09288	-333
SOLARUS	44.1	0.05967	206.6
Eborx eco classic 2.0	30.09	0.04168	211
Arcon solar HEATstore	25.3	0.02724	486.6


AALBORG UNIVERSITY International C DENMARK 4th Generation

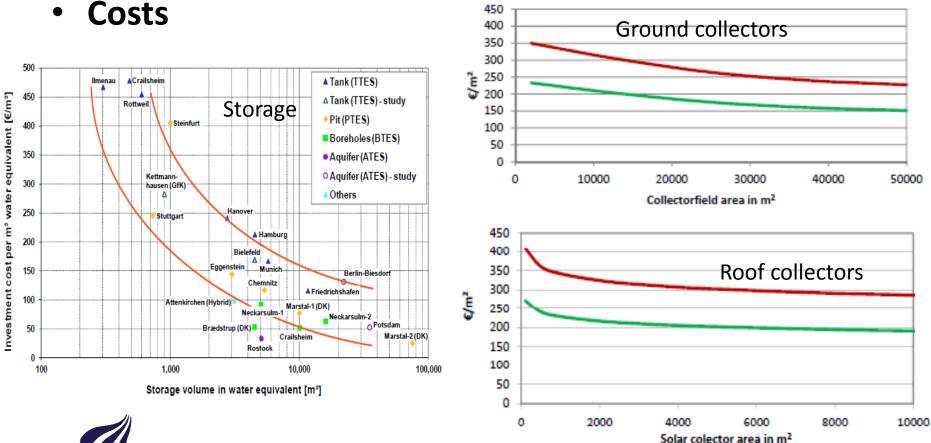
Solar energy for DH - Preheating

- Small solar field
- Hybrid profitable at high electricity price

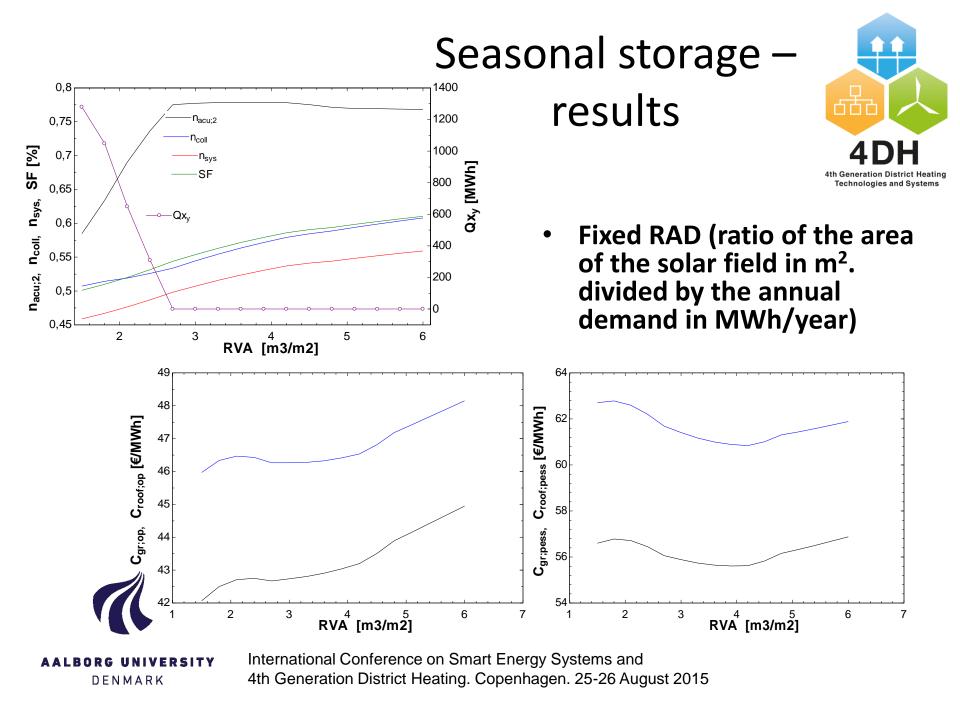
- Large scale solar field
- Hybrid profitable at high electricity price. and low gas price

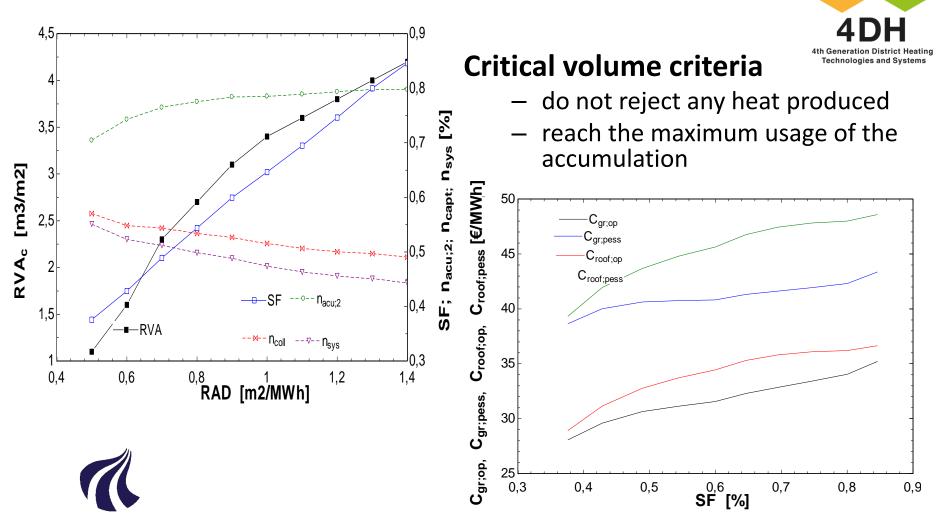
AALBORG UNIVERSITY DENMARK

Solar energy for DH – Seasonal storage

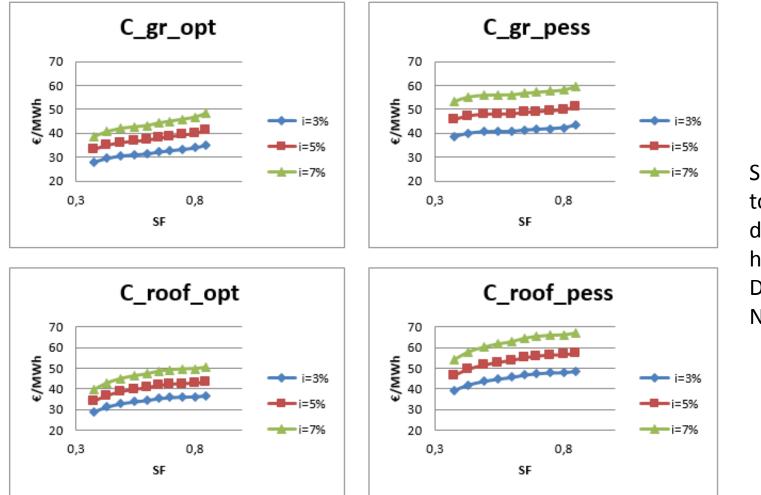

Technologies and Systems

 Model - Simple Method developed by Mateo de Guadalfajara. proposed by Solar heating and cooling SHC in the task 45 as an evaluation tool for Central Solar Heating Plants with Seasonal Storage


Solar energy for DH – Seasonal storage



AALBORG UNIVERSITY DENMARK



Seasonal storage – results

LBORG UNIVERSITY DENMARK

Seasonal storage – sensitivity analysis

Ath Generation District Heating Technologies and Systems

Similar cost to solar district heating in Denmark, Nielsen

Sensitivity analysis for different interest rates

AALBORG UNIVERSITY

DENMARK

Utility company plans

- Construction of DH system with two plants and expansion of distribution network
- Decommissioning of other boiler rooms
- Increase in energy efficiency
- Introduction of RES into the system
- Construction of optimization and remote control system

Recommendations for future

- Integration of all the plants → 2 plants. one solar plant and the other one gas operated or biomas power plant
- Decrease the working temperatures from 105°C/70°C to 50°C/30°C
- System with low losses
- 40.4 potential GWh for domestic hot water demand 44 GWh for district heating
- Recommendations are in correlation with utility company plans

DENMARK

BORG UNIVERSITY

Thank you for your attention!

Ass. Prof. Goran Krajacic. dipl. Ing.. (PhD) Power Engineering and Energy Management Chair Department of Energy. Power Engineering and Environment Faculty of Mechanical Engineering and Naval Architecture University of Zagreb goran.krajacic@fsb.hr http://www.beastproject.eu/ http://stratego-project.eu/

