
Iterations for heat savings, electrification, and district heating.

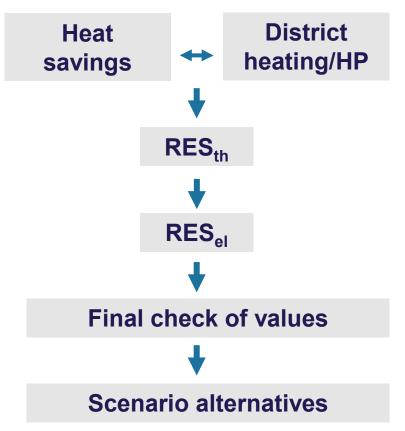
Susana Paardekooper and Rasmus Lund

4th Generation District Heating Technologies and Systems

Heat Roadmap Europe projects

- Study 1 (2012): will district heating play a role in the decarbonisation of the European energy system?
- Study 2 (2013): what is the balance between heat savings and heat supply at an EU level?
- Study 3 (2015, STRATEGO WP2): low-carbon heating and cooling strategies for 5 member states
- Study 4 (2016-2019): integrated low-carbon heating and cooling strategies for 14 member states

3	Qua	ntifying the Impact of Increased Energy Efficiency in the Heating Sector	. 16
	3.1	Step 0: Creating the Reference 2010 and BAU 2050 Models	17
	3.2	Step 1: Adding Heat Savings	20
	3.3	Step 2: Comparing Heat Network Solutions	22
	3.4	Step 3: Comparing Individual Heating Solutions	27
	3.5	Step 4: Integrating More Excess and Renewable Heat	28
	3.6	Step 5: Integrating More Renewable Electricity in the Heating Sector	30
	3.7	Step 6: Heat Roadmap	30



Motivation

Move from <u>balance</u> to <u>interplay</u>

- Does it make a difference?
- Is it possible to use the resulting trends to understand the scenarios better?
- Treating them sequentially in the context of a Roadmap can be a confusing message.
- Represents a less exploratory approach

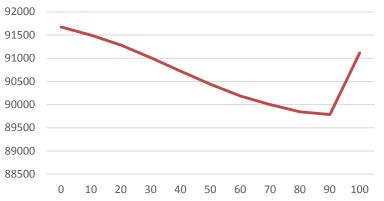
Methodology

- Repetitive simultation of systems with different levels (5 and 10% increases) in EnergyPLAN
- Transport and electricity; taken from Conventionally Decarbonised scenario
- Heuristics: merit order
 - Boiler capacity to cover peak + 10%
 - Excess heat; maximum
 - PP/CHP to cover that demand +10%
- 700 combinations with corresponding scenarios
- Heat Roadmap Europe: background reports on website

Methodology: heuristics

Ceteris paribus approach over trying to achieve a certain objective.

- Boiler capacity to cover peak + 10%
- Excess heat; maximum based
 - Spatial constraints, temporal constraints (baseload), temp.
- Geothermal: maximum based on spatial constraints
- Solar thermal: capped at 5% of the DH production
- CHPth capacity: average hour demand
- LSHPth: low peak demand
- PP: peak demand (incl. demand for small and large HPs)
 +10%


Results: matrices

Costs and PES: Netherlands

NL: Costs as DH penetration increases

Total energy system costs (M€/year)		Residential sector savings additional to the Baseline						
		0	5%	10%	15%	20%	25%	
Ŧ	0%	55251	55230	55237	55207	55267	55759	
by D	5%	55178	55153	55156	55121	55176	55665	
covered	11%	55069	55040	55038	55001	55050	55534	
	19%	54896	54864	54857	54816	54860	55340	
hare	28%	54702	54665	54655	54609	54649	55125	
market s	38%	54514	54473	54458	54408	54444	54916	
	47%	54362	54318	54298	54245	54276	54743	
e of	56%	54286	54236	54212	54154	54180	54643	
Percentage of market share covered by DH	66%	54242	54188	54159	54097	54117	54576	
	76%	54302	54244	54210	54142	54158	54612	
<u>.</u>	86%	55865	55802	55764	55691	55702	56151	

NL: Costs as savings increase

Results: where do costs change?

Annualised						
Costs(M€/year)	S0 DH0	S20 D90		Difference		
Savings		9260		10040	780	
Indiv. HP		5094		532	-4562	
PP and CHP		3330		2885	-445	
Electric grid costs		37023		37023	0	
RES electricity		1531		1531	0	
DH infrastructure		0		1816	1816	
Boilers		0		1297	1297	
Heat pumps		0		197	197	
Solar thermal		0		92	92	
Geothermal		0		21	21	
Excess heat		0		10	10	
Other		1530		1499	-31	
Coal		0		0	0	
Oil		511		511	0	
Gas		10704		9675	-1029	
Biomass		12812		12754	-58	
O&M		6075		5137	-938	
Balance					-3112	
Total		91674		88562		
				97%		

Next steps

4DH
4th Generation District Heating Technologies and Systems

- 1. Describe scenarios more precisely
- 2. Extract heat/cooling costs from total system costs
- 3. Exemplify/explain the trends better (what kind of investment costs rise, etc)
- 4. Discuss country variations
- (minimising cost and PES here but no hard biomass constraint

Conclusions

4DH
4th Generation District Heating Technologies and Systems

- The balance is more complex than the traditional positive exponential curve visualisation.
 - There are almost always cut-off points, also for DH
 - Fuel savings and economic savings do not always run hand in hand
- The results differ per country, but there are trends
 - Eastern Europe: more savings than within the scope
 - DH: much more driven by urban/rural nexus than climate or current level of DH
- What are the implications if we achieve more or less of this efficiency?

Thank you!

Contact: susana@plan.aau.dk

Heat Roadmap Europe: www.heatroadmap.eu

Pan-European Thermal Atlas: www.heatroadmap.eu/maps

HRE Twitter: @HeatRoadmapEU

