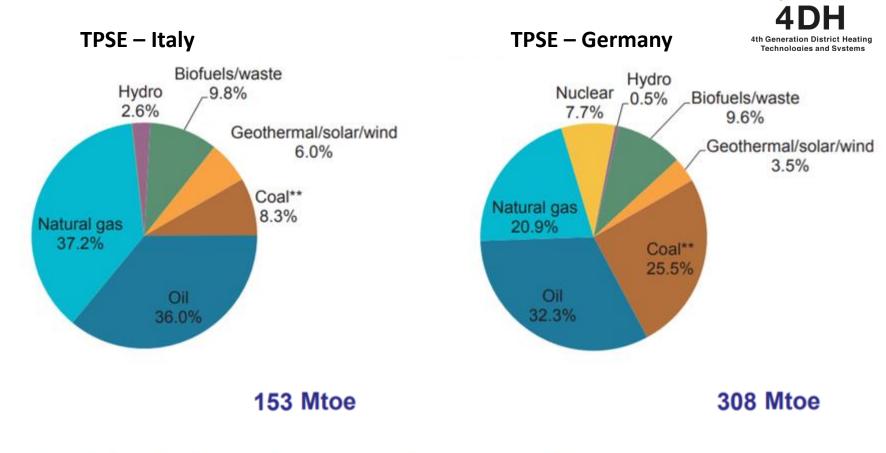

4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

AALBORG UNIVERSITY DENMARK 4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 4th Generation District Heating Technologies and Systems


Outline

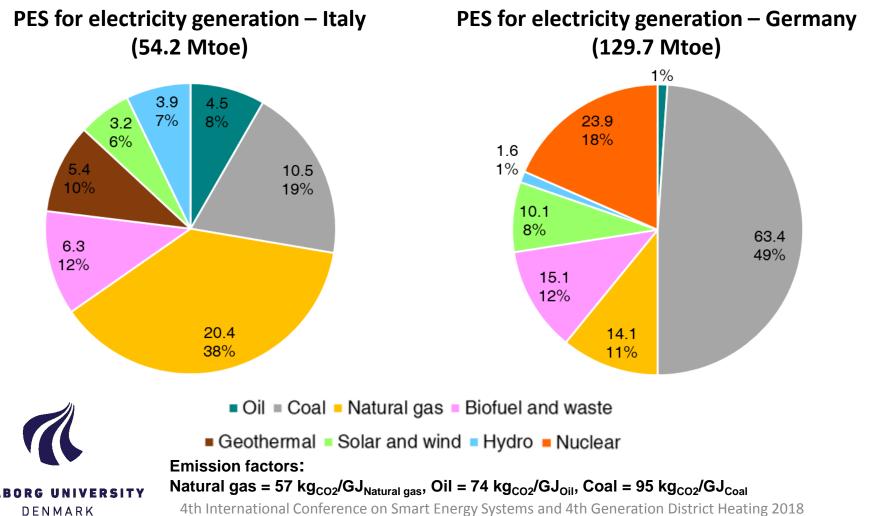
Total Primary Energy Supply (TPES) at 2015

* Share of TPES excludes electricity trade. ** In this graph, peat and oil shale are aggregated with coal, when relevant. Note: For presentational purposes, shares of under 0.1% are not included and consequently the total may not add up to 100%.

© OECD/IEA 2017

AALBORG UNIVERSITY

DENMARK


For more detailed data, please consult our on-line data service at http://data.iea.org.

占古

Primary energy supply: electricity generation at 2015*

*Source: IEA «Energy balaces for 2015»

#SES4DH2018

RES integration scenarios

		Intermittent RES capacity [GW]									
		Italy		Germany							
	RES2015	RES2030 ¹	RES2050 ¹	RES2015	RES2030 ²	RES2050 ²					
Onshore wind	6.29	15.80	15.80	37.76	48.00	198.00					
Offshore wind	-	1.15	1.15	0.99	11.00	54.00					
PV	10.94	32.63	97.89	37.45	62.45	275.00					
CSP	-	2.00	6.00	-	-	-					
Total	17.23	51.58	120.84	76.2	121.45	527.00					

¹Derived from 2030 RES energy target as reported in "Strategia Energetica Nazionale 2017" and from current power hourly distribution. For 2050 wind capacity remains unchanged according to "Anev 2017 annual report" and capacity for solar increased until covering potential 93% of electricity generation as targeted by SEN2017.

²Derived from 2030 RES target as reported in "REmap, Renewable Energy Prospects: Germany" based on reference case 2030 and from "Auftraggeber und Unterstützer der Studie ENERGIEWIRTSCHAFTLICHE BEDEUTUNG DER OFFSHORE-WINDENERGIE FÜR DIE ENERGIEWENDE" using current power hourly distribution.

Other assumptions

Italy¹:

• 10 GW decrease in conventional power plants by 2030;

Germany²:

- nuclear power plants completely dismissed by 2030;
- decline in coal and natural gas (-14 % and -29 % respectively);
- doubling biomass consumption for electricity generation.

¹Source: "Strategia Energetica Nazionale 2017"

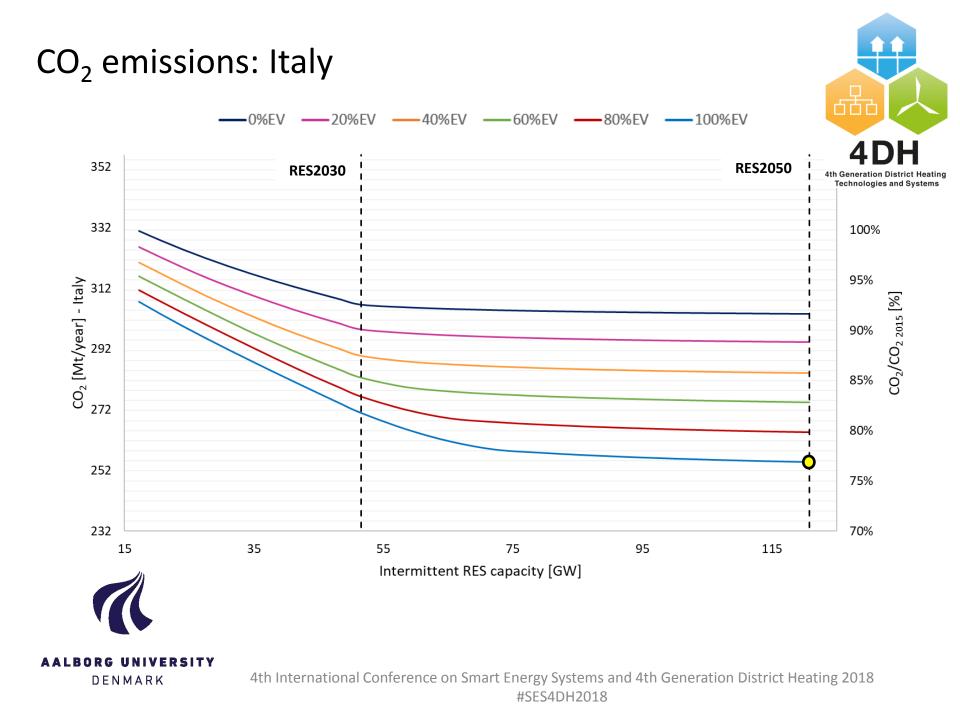
²Source: "REmap, Renewable Energy Prospects: Germany"

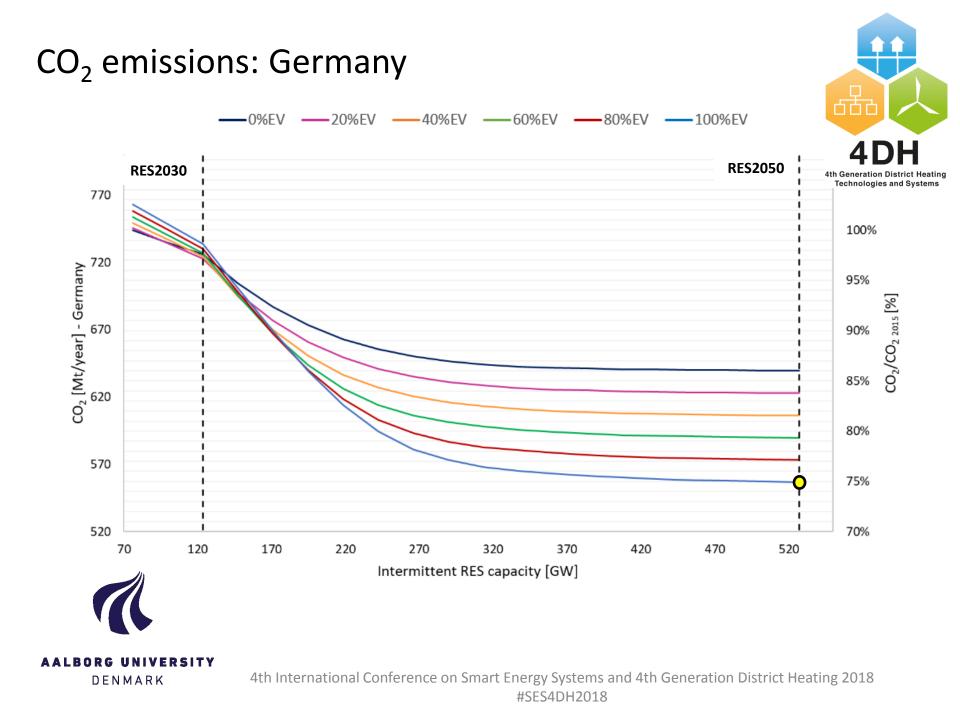
EV integration scenarios

Petrol private vehicles (e.g. @ Italy -30% conventional fleet replacement) 4

Size	Share by size	Initial vehicles (Mln)	Remaining vehicles (Mln)	Fuel Economy (l/100 km)	Consumption ¹ (TWh)
Small (<1400 cm ³)	45%	7.30	5.11	5.10	23.82
Medium (1400÷2000 cm ³)	53%	8.57	6.00	6.00	32.92
Large (>2000 cm ³)	2%	0.30	0.21	7.70	1.46
Total		16.17	11.32		58.20

Diesel private vehicles (e.g. @ Italy -30% conventional fleet replacement)

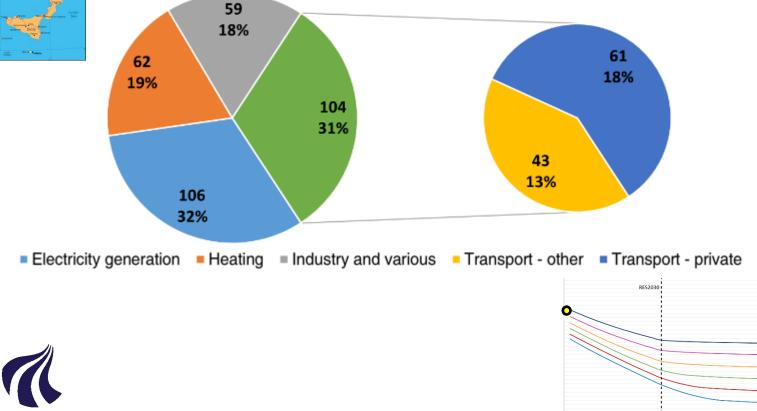

Size	Share by size	Initial vehicles (Mln)	Remaining vehicles (Mln)	Fuel Economy (l/100 km)	Consumption ² (TWh)
Small (<1400 cm ³)	1%	0.15	0.10	4.20	0.06
Medium (1400÷2000 cm ³)	85%	12.33	8.63	4.90	6.25
Large (>2000 cm ³)	14%	2.01	1.41	6.40	1.33
Total		14.49	10.14		7.64


9.2 million vehicles to be replaced by EV

¹based on 10120 km/year

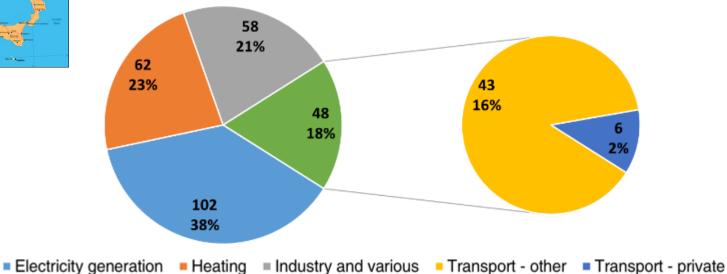
²based on 16505 km/year

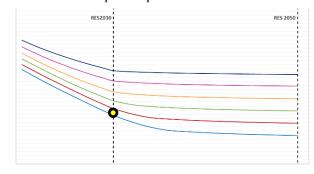
AALBORG UNIVERSITY DENMARK


CO₂ emissions by sector: Italy

Base case 2015 - 331 Mt CO₂ - Italy

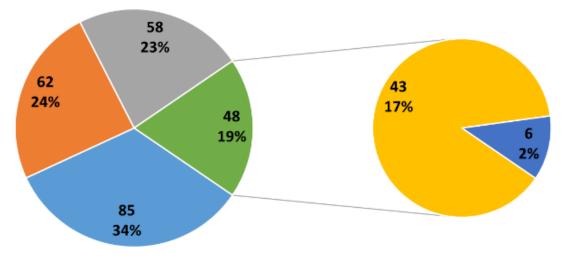
RES 2050

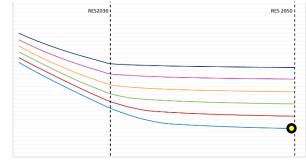



AALBORG UNIVERSITY DENMARK

CO₂ emissions by sector: Italy

RES2030 + 100%EV - 270 Mt CO₂ - Italy (-18%)

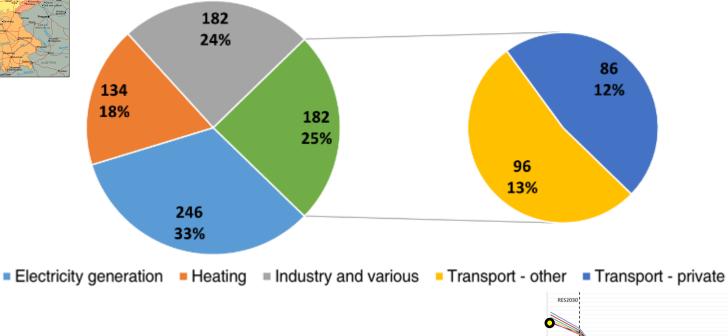

CO₂ emissions by sector: Italy


AALBORG UNIVERSITY

DENMARK

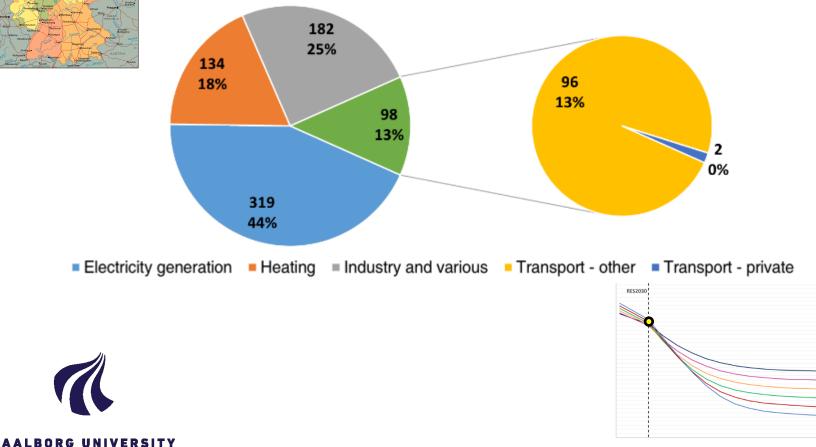
RES2050 + 100%EV - 254 Mt CO₂ - Italy (-23%)

Electricity generation = Heating = Industry and various = Transport - other = Transport - private


CO₂ emissions by sector: Germany

Base case 2015 - 744 Mt CO₂ - Germany

RES 2050



CO₂ emissions by sector: Germany

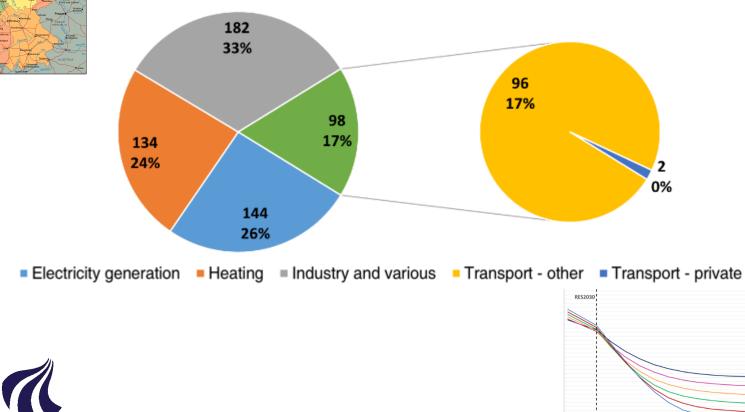
DENMARK

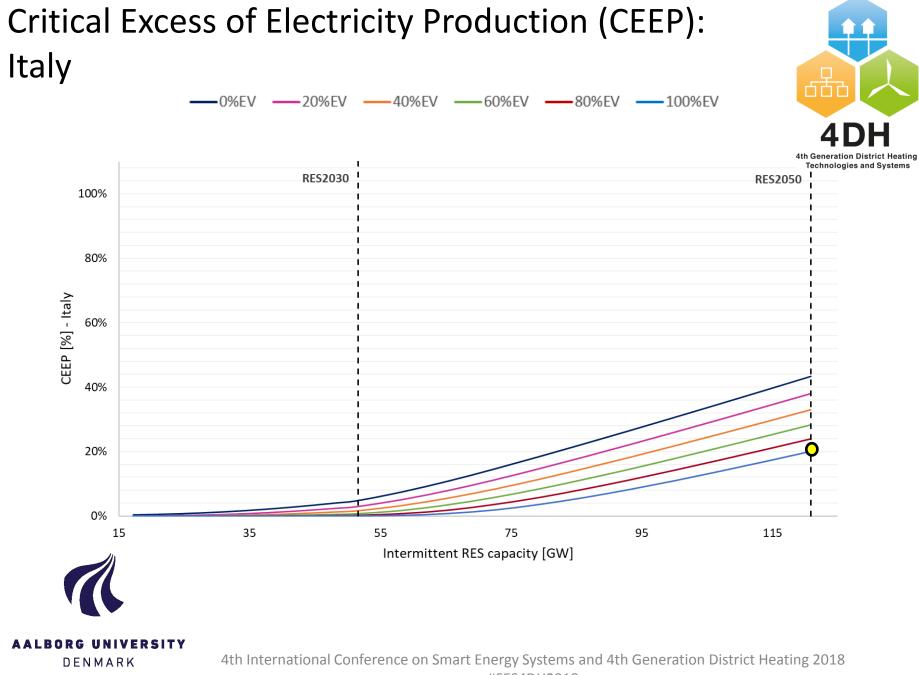
RES2030 + 100%EV - 733 Mt CO₂ - Germany (-2%)

RES 2050

CO₂ emissions by sector: Germany

AALBORG UNIVERSITY

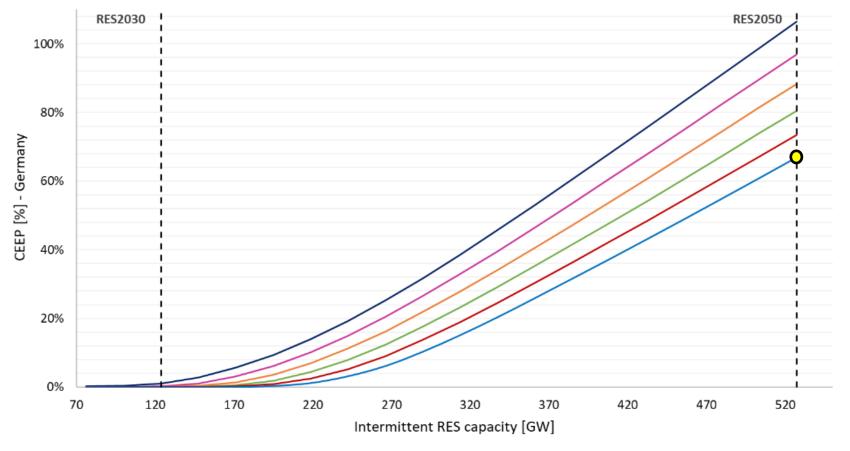

DENMARK

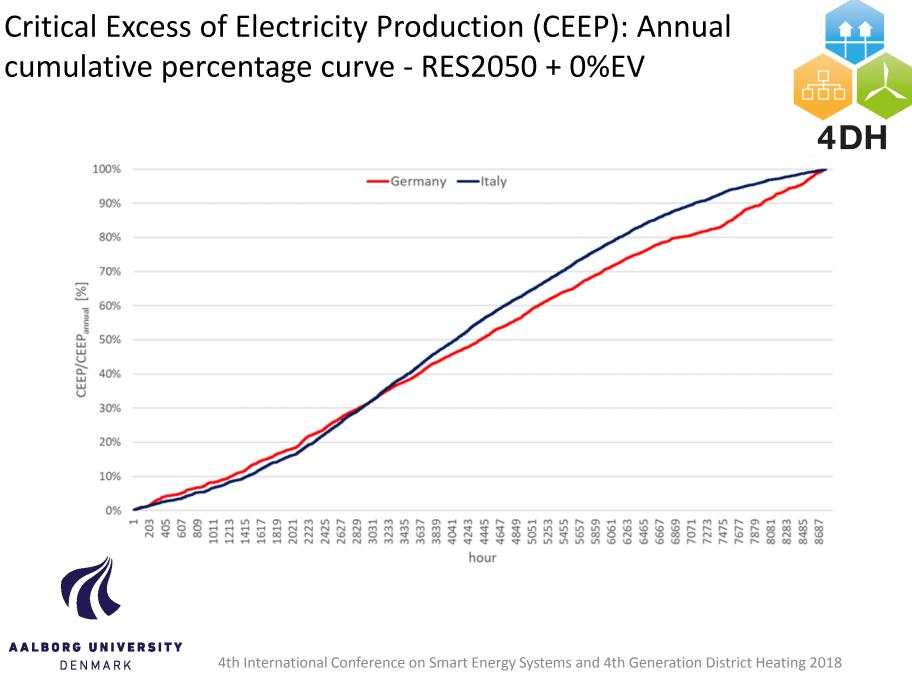

RES2030 + 100%EV - 733 Mt CO₂ - Germany (-25%)

4th Generation District Heating Technologies and Systems

RES 2050

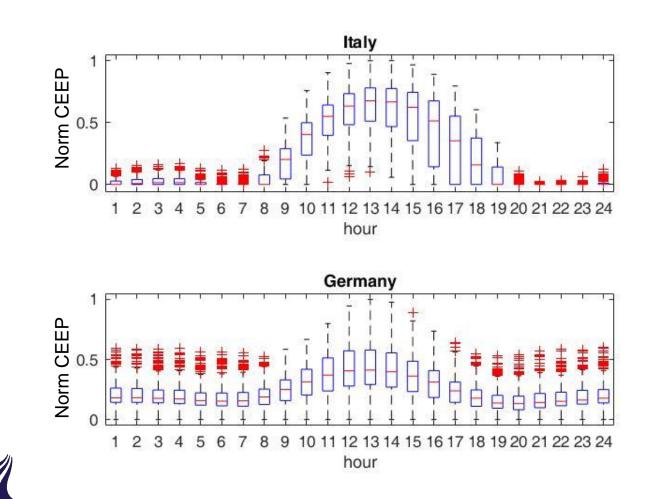
O




#SES4DH2018

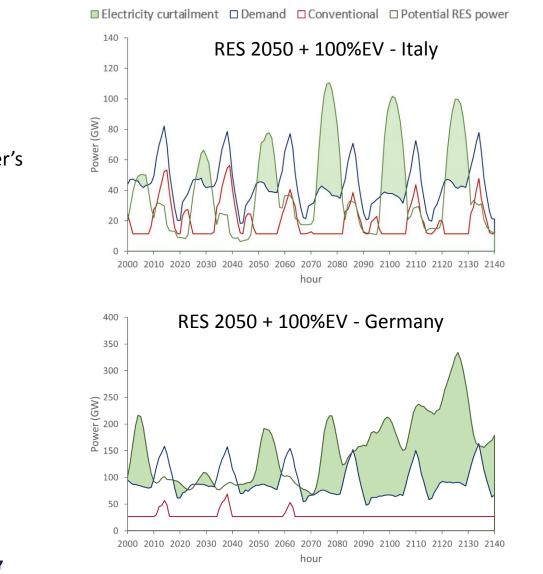
Critical Excess of Electricity Production (CEEP): Germany

AALBORG UNIVERSITY DENMARK



#SES4DH2018

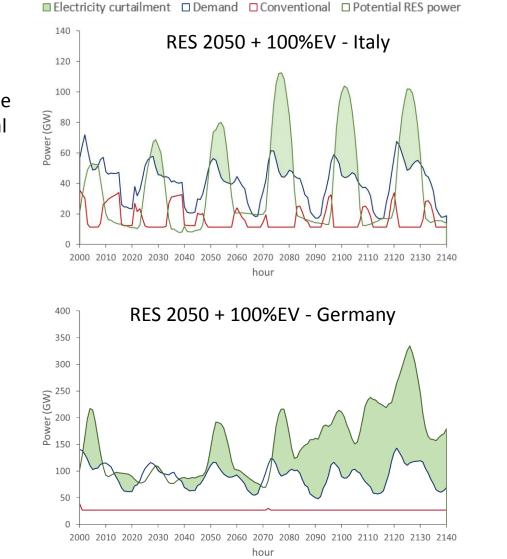
Critical Excess of Electricity Production (CEEP): Daily distribution - RES2050 + 0%EV


AALBORG UNIVERSITY

DENMARK

ADDH ADDH Bechnologies and Systems

Supply and demand: Dump charge


Dump charge: EV are charged according to driver's needs/habits

Supply and demand: Smart charge

Smart charge: EV are charged with the aim to absorb potential RES surplus thus minimizing grid overloading

AALBORG UNIVERSITY DENMARK

CO₂ emissions variation: Italy vs Germany

RES2050 - Italy

	0%EV	20%EV	40%EV	60%EV	80%EV	100%EV
CO ₂ variation [%]						
Dump	-8.2%	-10.6%	-12.4%	-13.8%	-15.0%	-17.2%
Smart	-8.2%	-11.0%	-14.1%	-17.0%	-19.9%	-22.9%

RES2050 - Germany

	0%EV	20%EV	40%EV	60%EV	80%EV	100%EV
CO ₂ variation [%]						
Dump	-14.0%	-16.2%	-18.4%	-20.3%	-21.9%	-23.0%
Smart	-14.0%	-16.3%	-18.5%	-20.7%	-23.0%	-25.2%

Costs variation

RES2050 - Italy

		0%EV	20%EV	40%EV	60%EV	80%EV	100%EV
Variable costs [%]	Dump	-8.77%	-11.70%	-14.58%	-17.07%	-19.43%	-22.61%
	Smart	-8.77%	-12.28%	-16.16%	-19.84%	-23.55%	-27.25%
Investment costs [%]	Dump/Smart	16.22%	31.52%	46.81%	62.11%	77.41%	92.71%
Total costs [%]	Dump	7.85%	16.86%	26.07%	35.41%	44.79%	53.90%
	Smart	7.85%	16.85%	25.72%	34.66%	43.59%	52.53%

RES2050 - Germany

				-			
		0%EV	20%EV	40%EV	60%EV	80%EV	100%EV
Variable costs [%]	Dump	-11.0%	-14.0%	-16.9%	-19.7%	-22.2%	-24.5%
	Smart	-11.0%	-14.0%	-17.0%	-20.0%	-23.0%	-25.9%
Investment costs [%]	Dump/Smart	32.9%	43.2%	52.4%	61.6%	70.8%	80.0%
	Dump	15.9%	21.0%	25.5%	30.1%	34.7%	39.5%
Total costs [%]	Smart	15.9%	21.0%	25.5%	30.0%	34.4%	38.9%

AALBORG UNIVERSITY DENMARK

Conclusions (1)

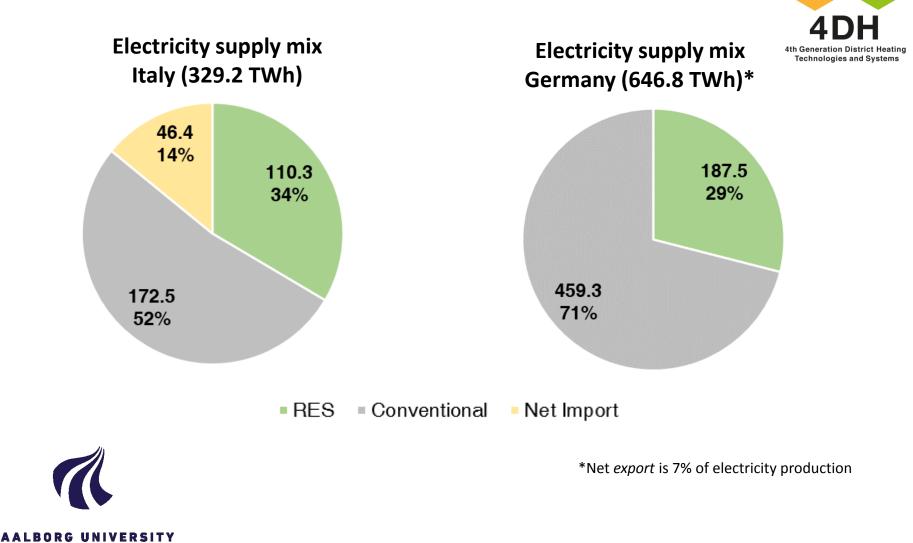
- The impact of EV on energy systems characterised by a different supply mix for the electricity generation sector has been assessed;
- Projections for 2030 and 2050 renewable energy capacities have been implemented along with progressively increasing shares of EV up to a total replacement of conventional vehicle fleet;
- EV penetration in the energy system worsen CO₂ emissions for the German case unless renewable installed capacity is increased up to approximately double the base case scenario, while electric private mobility proves to be sustainable in the Italian system even at the current RES capacity;

Conclusions (2)

- Smart charge positively contributes to emissions reduction, more significantly for the Italian case due to the particularly uneven distribution of excess of production throughout the day and the year with respect to Germany;
- To sum up, at the highest RES capacity, assuming a complete replacement of conventional cars by EV:
 - CO₂ emissions can be reduced by 25% and 23% for Germany and Italy respectively at the price of a significant amount of curtailments (respectively 68% and 22% of the total production);
 - The higher installed capacity and EV penetration in the energy system result in higher investment costs, however mitigated by a variable costs reduction (lower fuel consumption), thus leading to a total cost increase up to around 50%.

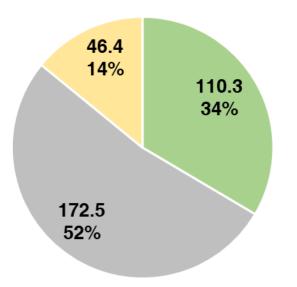
Future developments

- Optimum scenarios should be identified aiming at the best environmental and economic solutions;
- Possible synergies with other energy sectors (e.g. heating, heavy transport sector) should be investigated under a Smart Energy System perspective identifying the optimum sector-coupling strategy.



Thanks for your attention

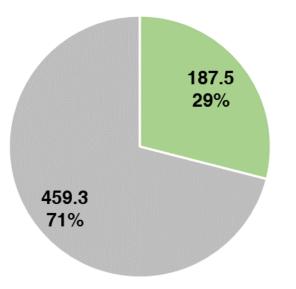
Electricity supply by source at 2015: Italy


ſſŤ

DENMARK

Energy supply by source at 2015: Italy

RES = Conventional = Net Import


	TWh	% of total
RES	110.3	34%
Hydro	47.0	14%
Geothermal	6.2	2%
Wind	14.8	4%
PV	22.9	7%
Bioenergies	19.4	6%
Conventional	172.5	52%
Solid	43.2	13%
Natural gas	110.7	34%
Oil	5.6	2%
Other fuels	13.0	4%
Gross production	282.8	
Net Import	46.4	
Total gross demand	329.2	

Energy supply by source at 2015: Germany

*Net export is 7% of electricity production

	TWh	% of total
RES	187.5	29%
Hydro	24.9	4%
Geothermal	0.1	0%
Wind	79.2	12%
PV	38.7	6%
Bioenergies	44.6	7%
Conventional	459.3	71%
Solid	283.7	44%
Natural gas	63.0	10%
Oil	6.2	1%
Nuclear	91.8	14%
Other fuels	14.6	2%
Gross production	646.8	
Net Export	48.3	

Electricity production and excess @ RES2050 + 0% EV

Electricity national production (excluding CEEP)

Italy¹: 323 TWh Germany²: 644 TWh Germany/Italy: 2

Excess of production

Italy: 140 TWh Germany: 686 TWh Germany/Italy: 5

CEEP%_{Germany} ≈ 2.5 CEEP%_{Italy}

¹Import is still needed to cover fully electricity demand ²Differences with respect to 2015 demand due to model approximation

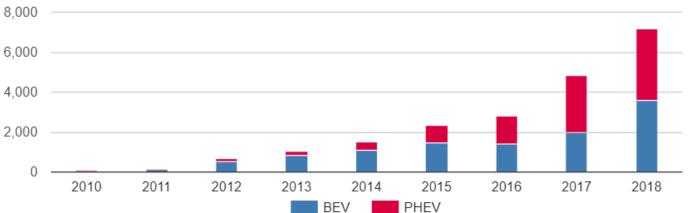
EV electricity consumption and potential excess

Excess of production @RES2050 + 0%EV Italy: 140 TWh

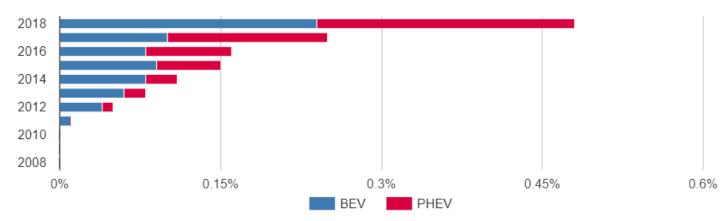
EV electricity demand @100%EV Italy: 84 TWh

Number of EV @100%EV Italy: 33.7 *10^6

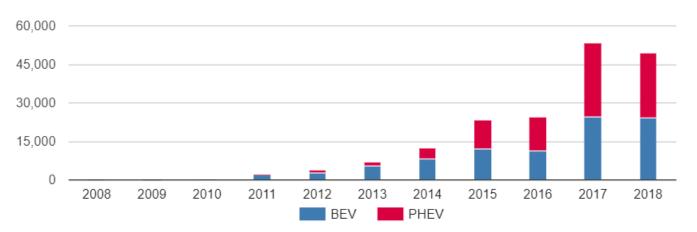
56 TWh excess remaining to be exploited in other sector



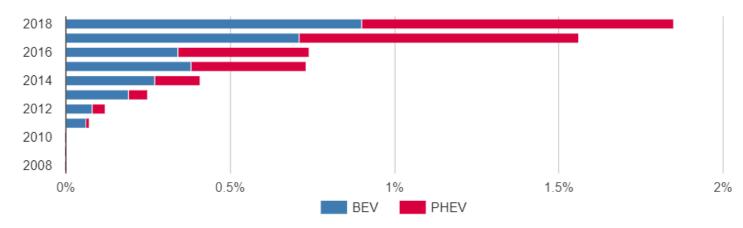
¹Import is still needed to cover fully electricity demand ²Differences with respect to 2015 demand due to model approximation


EV market share - Italy

EV sales (absolute value)


EV sales (% of total sales)

Source: EAFO, Italy


EV market share - Germanay

EV sales (absolute value)

EV sales (% of total sales)

Source: EAFO, Italy

EV market share: Italy - BEV

Vehicle model	2010	2011	2012	2013	2014	2015	2016	Tot 2015	Tot 2016	Capacity [kWh]	Range [km]
Fiat Panda	31	9	0	0	0	0	0	40	40	19.2	120
Fiat 500e	22	7	4	0	0	0	0	33	33	24	160
Renault Fluence	0	0	38	38	30	0	0	106	106	22	185
Nissan Leaf	0	5	146	323	336	390	473	1200	1673	24	199
Renault Zoe	0	0	0	204	156	328	210	688	898	22	210
Mercedes B 250e	0	0	0	0	0	80	90	80	170	28	200
Th!nk city	0	0	0	3	0	0	0	3	3	24	160
KIA soul	0	0	0	0	0	0	15	0	15	27	210
Bmw i3	0	0	0	34	124	111	91	269	360	22	190
Tesla Roadster	4	0	7	0	0	0	0	11	11	53	393
Tesla model X	0	0	0	0	0	0	23	0	23	90	414
Tesla Model S	0	0	0	19	55	134	218	208	426	60	390
Citroen C-Zero	0	87	146	55	15	164	145	467	612	14.5	150
Mitsubishi iMiev	3	36	14	0	0	0	0	53	53	16	160
Smart fortwo e-drive	33	80	37	155	252	115	0	672	672	16.5	135
Vw e-Up!	0	0	0	0	52	54	56	106	162	18	160
Peugeot iOn	0	59	116	17	25	0	26	217	243	14.5	150
Renault Kangoo	0	0	78	25	23	23	0	149	149	33	200
Fiat Doblò	12	6	0	0	0	0	0	18	18	43	150
Fiat (QUBO) Fiorino	10	4	0	0	0	0	0	14	14	23	200
Piaggio Porter	1	0	0	0	0	0	0	1	1	17	80
Total BEV Sales	116	293	586	873	1068	1399	1347	4335	5682		

EV market share: Italy - PHEV

Vehicle model	2010	2011	2012	2013	2014	2015	2016	Tot 2015	Tot 2016	Capacity [kWh]	Range [km]
Opel Ampera	0	3	62	19	0	0	0	84	84	16	56
Toyota Prius	0	0	39	8	87	0	0	134	134	4.4	23
Chevrolet Volt	0	0	38	38	0	0	0	76	76	16	56
Fisker Karma	0	0	6	0	0	0	0	6	6	20.1	51
Volvo V60 PHEV	0	0	0	135	59	0	0	194	194	11.2	43.5
Porsche Panamera	0	0	0	23	0	0	0	23	23	9.4	32
Mitsubishi outlander	0	0	0	0	85	133	0	218	218	9.8	52.8
Bmw i8	0	0	0	0	34	99	0	133	133	7.1	37
Vw Golf GTE	0	0	0	0	0	180	158	180	338	8.7	50
Audi A3 e-tron	0	0	0	0	0	86	0	86	86	8.8	50
Bmw 225xe	0	0	0	0	0	0	308	0	308	7.6	41
Bmw330e	0	0	0	0	0	0	107	0	107	7.6	25
Volvo XC90 PHEV	0	0	0	0	0	0	90	0	90	9	40
Others	0	0	0	9	76	242	654	327	981	4.4	23
Tot PHEV Sales	0	3	145	232	341	740	1317	1461	2778		

EV weighted-average technical specifications

Туре	Category	N.	Share	Avg capacity [kWh]	Avg range [km]	Annual cons. [GWh]
BEV	Small	1515	35%	15.68	144.40	2.44
	Medium	2419	56%	23.17	198.66	4.18
	Large	219	5%	59.65	390.15	0.50
	Van	182	4%	33.13	194.40	0.46
Tot. BEV		4335				7.57
PHEV		1461		8.56	40.23	4.60
Tot. EV		5796				12.17

Cost analysis: RES

	Investment [M€/MW-e]	Period [Years]	O. and M. [% of Inv.]
Onshore wind	1.3	20	3.1
Offshore wind	2.4	20	3.0
Photovoltaic	1.3	30	2.1
Concentrating solar	6.0	25	8.2

Source: "(Heat Roadmap Europe 3 and STRATEGO WP2 Main Report) Enhanced Heating and Cooling Plans to Quantify the Impact of Increased Energy Efficiency in EU Member States: Translating the Heat Roadmap Europe Methodology to Member State Level.," 2015.

Cost analysis: EV

	Petrol	Diesel	EV
Small	12.39	13.45	29.81
Medium	23.40	21.00	37.03
Large	62.65	58.17	88.33

Conventional and EV purchase costs (k€) - Italy

Conventional and EV purchase costs (k€)- Germany

	Petrol	Diesel	EV
Small	13.60	16.20	24.96
Medium	23.40	26.40	36.43
Large	62.65	60.43	87.68

