4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Fault handling in district heating substations

- Experiences from the industry

AALBORG UNIVERSITY DENMARK 4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018 4th Generation District Heating Technologies and Systems

Why investigate fault handling in substations?

- Two common reasons to increased return temperatures:
 - Faults in customers' internal heating system
 - Faults in customer substations
- Many installations are poorly performing in some way → higher return temperatures
- Substations must be well performing in 4GDH systems to maintain low temperatures

Research questions and method

How do the utilities work with fault handling today?

- Interview study:
 - Qualitative interviews with representatives from 6 utilities
 - Focus: how the utilities worked with the customers to decrease the return temperatures

What faults are most common today?

- Survey study:
 - Survey was sent to 139 different utilities in Sweden 56 utilities answered
 - Focus: what are the most common faults and how the utilities work with them

Results from interview study What incentives do DH utilities have to work with customer fault handling?

Incentives for DH utilities

- Maintain good system efficiency
- System advantages when certain production units are used, e.g. flue gas condensation
- Diminish pump effort and electricity use by avoiding high flow
- Enhanced customer satisfaction

Incentives for DH customers

- Relationship with the utility information and willingness to help
- Flow component in price model
 - Information extremely important!
- Collective responsibility to keep DH prices down

Results from interview study How are the utilities working with fault handling?

Fault detection and fault diagnosis

- Using customer data for fault detection
 - Overflow/overconsumption
 - Return temperature analysis
 - Own analysis methods
- Most faults are identified on-site by service technicians

Access to and mandate of the substations

- Important to gain physical access to the installations
 - Service agreements Some utilities included this in the price
 - Free of charge inspections
- One of the most important aspects of the fault handling process

LUNDS UNIVERSITET Lunds Tekniska Högskola

Survey study

What faults are most common today?

Ay? 4DH Ath Generation District Heating Technologies and Systems

Five different categories of faults were identified:

- 1. Heat exchangers
- 2. Control system and controller
- 3. Actuators
- 4. Control valves
- 5. Customer's internal heating system

Conclusions and future work

- How do the utilities work with fault handling today?
 - Incentives for customer are important
 - Information and willingness to help
 - Access to and mandate of the substations is very important!
- What faults are most common today?
 - One overall category is most common: leakages
 - Faults in customer's internal heating system are common
- Future work:
 - Continued work with current fault handling procedures
 - Further investigation of the most common faults
 - Develop methods for identifying the most common faults off-site

Thank you for your attention!

Contact: Sara Månsson, +46 46 222 33 20 sara.mansson@energy.lth.se

