

3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 2017

DENMARK

Optimizing thermal energy storage in 4GDH

Novelties

Framework for optimal TES integration
Optimization model for DHC pipes
Synthetic neighborhood heat loads

Context – EFRO-SALK GeoWatt Project "Towards a Sustainable Energy Supply in Cities"

Research topics

- 🥆 Optimal design
- Thermal network control
- 🥆 Flexibility
- Geothermal energyFault detection
- 🥆 Building models

Common case

🥆 City of Genk (B)

Aim & Objectives

FINAL: Optimize storage size and location in 4DH

This presentation:

- Set up optimization framework
- Model selection
- Data collection

I MARK

© Bing Maps 2017

Control optimization

Linear, fixed nominal temperature levels

Predefined pipe diameters

Novel:

- Model of mass and heat flow in pipes (van der Heijde *et al.,* 2017)
- $\dot{\pi}$ \dot{Q} and \dot{m} decoupled, except at demand

Pipe model

\frown Fixed supply and return T to calculate heat losses $9 + 10^{3}$ ▲Linear model 8 ► Integers for flow direction 7 6 ---- Q. Heat loss [W] ---- Q, - Qtot \dot{Q}_{transp} $Q_{v,Wall}$ Qr,Wall 3 2 1 0 Exact \dot{Q}_{transp} 2 3 4 5 Mass flow rate [kg/s] 'n Source: van der Heijde et al., 2017 van der Heijde, B., Aertgeerts, A., & Helsen, L. (2017). Modelling steady-state thermal behaviour of double thermal network No heat losses pipes. International Journal of Thermal Sciences, 117, 316–327. https://doi.org/10.1016/j.ijthermalsci.2017.03.026 12

Network nodes

Component	Temperatures	Mass flow rate	Heat flow rate
Storage	Fixed	Variable	Variable
Heat demand	Fixed	Preset	Preset
Solar thermal	Fixed	Preset	Preset
Central heat production	Floating	Variable	Variable

Heat and mass flow balance in every node

Solution $\dot{Q} = \dot{m} \cdot c_p (T_H - T_L)$ only valid at fixed components

Vandewalle, J., & D'haeseleer, W. (2014). The impact of small scale cogeneration on the gas demand at distribution level. *Energy Conversion and Management*, 78, 137–150. <u>https://doi.org/10.1016/j.enconman.2013.10.005</u>

Preliminary results

Conclusion

Framework for optimal TES integration
Optimization model for DHC pipes
Synthetic neighborhood heat loads

Future work

- Storage optimization loop
- Implement representative weeks
- Evaluate different objective functions

References

- van der Heijde, B., Aertgeerts, A., & Helsen, L. (2017). Modelling steady-state thermal behaviour of double thermal network pipes. *International Journal of Thermal Sciences*, 117, 316–327. <u>https://doi.org/10.1016/j.ijthermalsci.2017.03.026</u>
- Vandewalle, J., & D'haeseleer, W. (2014). The impact of small scale cogeneration on the gas demand at distribution level. *Energy Conversion and Management*, 78, 137–150. https://doi.org/10.1016/j.enconman.2013.10.005

Context – EFRO-SALK GeoWatt Project

Building modelling Building simulation Parametrisation Fault detection in substations

Optimal routing

Building Count Map

Case Genk

TJ Map

© Bing Maps 2017