#### **KU LEUVEN**



Co-funded by the Horizon 2020 programme of the European Union, Grant No. 695780







4<sup>th</sup> International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

Hasselt case study, Preliminary economic aspect and Simulation

Muhannad Delwati, PhD candidate. KU Leuven Ahmed Ammar, MSc., KU Leuven. Philipp Geyer Prof. Dr.-Ing., KU Leuven



### **OVERVIEW**

- Thermo-chemical District Network Introduction
- Modeling & Simulation Strategy for Hasselt Case Study
- Simulation results → Integrated System Integrated& DH of Hasselt
- Hasselt Case Study (Intro., Objectives & Key Figures)
- Hasselt: Results, Economics & Reflections
- Conclusion

### **Thermo-chemical District Network Introduction**



### Thermo-Chemical(TC) District network(DN) system

#### TC District network system parts and components



TCF : Thermo-chemical fluid (brine), MgCl2, LiCl,...

## **Absorption/Desorption Technology**



## Thermo-chemical processes in a network



### Modeling & Simulation strategy for Hasselt City (sector)



\* Modelica library, IDEAS library, BRINE library 7

### Modeling scheme of Integrated system of Space heating



#### **KU LEUVEN**

#### Modelica Integrated system of space heating model



#### Simulation results of Integrated space heating



#### Simulation results of Integrated heating space

#### Supplied heat to the 3 building clusters of both system



| Cluster | No. of<br>Buildings | volume<br>m3 | Heat<br>demand<br>(MWh) | Specific_Heat_<br>Demand<br>(kWh/m2.a) |
|---------|---------------------|--------------|-------------------------|----------------------------------------|
| 1       | 1                   | 345          | 6.5                     | 106                                    |
| 2       | 5                   | 489          | 12.9                    | 147                                    |
| 3       | 6                   | 346          | 10.8                    | 352                                    |



#### Integrated DH model of a Hasselt city sector



**KU LEUVEN** 

### **Simulation results of Integrated District Network**



72%

28%

37

**KU LEUVEN** 

april

Heating period, month

oktober november december januari

februari

maart

120

100 80

60

40

20 0

Heating [

### **Hasselt Case Study: Intro**

- Medium-size Town (~70k Inhabitants)
- Approx. 54,000 Buildings (all types)
- PETA 4.2 Category:

Very High Energy Synergy Region

- Excess Heat Sources from Industry & Power Generation
- Available Data

OFICTOAAT

- GIS Data for 50x50m Cells for Yearly Gas Consumption
  - GIS Data for Individual Buildings Heights and Footprints

- GIS data for gas comsumption was obtained from INFRAX; a gas DSO in Hasselt Municipality

- Data obtained from Vlaanderen Overheid, geopunt.be

WINDHALM

- Heat Roadmap Europe Project, Pan-European Thermal Atlas 4.2, https://heatroadmap.eu/peta4/, 2018

### Hasselt Case Study: Objectives

- **1. to explore** the potential and feasibility for a city-level TCF network in a real-life scenario
- 2. to present potential H-DisNet advantages over alternative technologies at district level
- **3. to investigate** under which scenario(s) H-DisNet will be economically competitive/attractive

## **Hasselt Case Study**

#### **Methods**

- from input 50x50m gas cons.
   data to individual heat demand
- Buildings Clustering acc. to Specific Heat Demand (kWh/m<sup>2</sup>) for MODELICA Simulations
- Integrated System: TCF + Heat Pump
- Calculate Annualized Project Costs – Compare to Alternative Technologies

### to be applied for?

- Target 13,846 Average-EU Residential Buildings
- Average Heat Demand of ~12 MWh/a (Result)

**KU LEUV** 

## **Hasselt Case Study: Results**

- Serving 155 GWh/a of Heat Demand (42% City Coverage)
- 3 Building Clusters acc. to Specific Heat Demand



 Clear Advantage for conv. оп over п-олямет, <u>вот</u> Long Distance Transport?!!

**KU LEUVEN** 

## Hasselt Case Study: Reflections

- There are some challenges:
  - 1. Urban SprawI: CAPEX and OPEX
  - 2. Complexity of in-house Systems
  - 3. Heat Pump Operation within Proposed System marginalizes Benefits
  - **4.** Economic Competition with Carbon-Intensive Technologies & Conventional District Heating
- But light at the end of the tunnel?

Long-Distance Transport of Excess Heat to Energydense Area Correct Government or EU Incentives

**KU LEUVEN** 

## Is H-DisNet A Solution?

High Natural Gas Price
Low CO<sub>2</sub> emissions in Power Mix



Data for Commodity Prices obtained from European Comission, EUROSTAT Data Statistics

## Is H-DisNet A Solution? (Future Scenario)

![](_page_19_Figure_1.jpeg)

## Conclusion

- H-DisNet presents a clear environmental advantage for long-distance transport of excess heat to energy-dense areas.
- Economic Incentives needed for better competitiveness of H-DisNet.
- The integrated TCF system with HeatPump system in space heating case is feasible.
- Reduce the use of Heat Pump system to ~ 28% of total supplied heat
- Heating energy of integrated district network is significantly high, comparing with TCF pumping energy, which is 0.01% of the total energy.

#### **Future work**

- Explore economics for H-DisNet energy-dense areas rather than whole cities.
- Include cooling application in the integrated district network study & simulation.
- Optimize the integrated system with better control.
- Full scale dynamic simulation for larger district network.

# Questions?

Thank you

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

Co-funded by the Horizon 2020 programme of the European Union, Grant No. 695780

![](_page_21_Picture_5.jpeg)