

4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg 13-14 November 2018

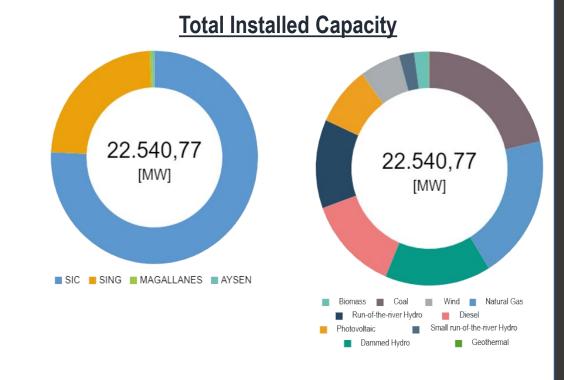
Heat Roadmap Chile District heating and cooling in the future Chilean energy system

Miguel Chang, Susana Paardekooper, Steffen Nielsen, Lars Grundahl, Jonas Dahlbæk

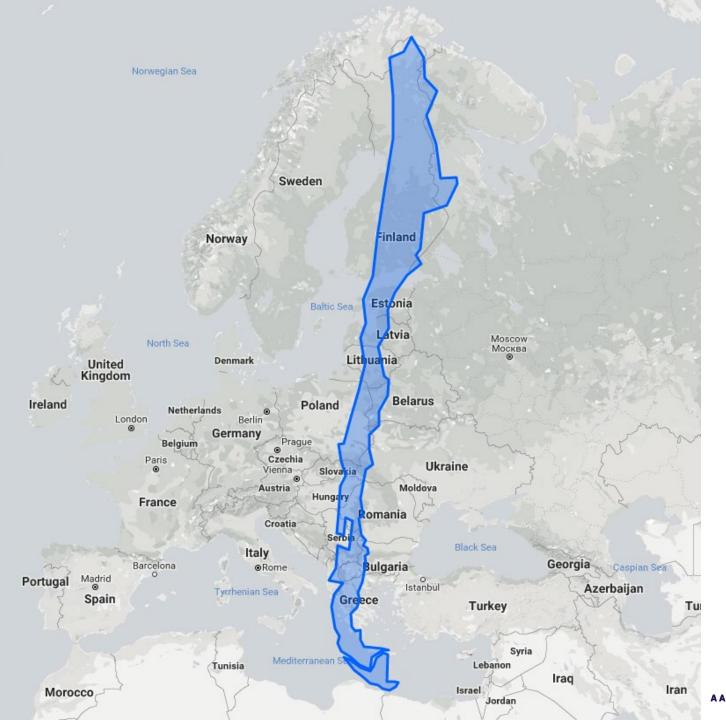
miguel@plan.aau.dk

Sustainable Energy Planning
Aalborg University

Content



- Background
- Goals and approach
- Reference energy system
- Preliminary scenarios
- Next steps


SING SEA

Background

- Consists of non-connected systems
 - Interconnection between North (SING) and Central (SIC) systems: >90% of demand
- High fossil fuel consumption
- "2050 Energy Vision"
 - 70% share of RES in electricity sector

Background

- Biomass based heating and individual solutions
 - Harvesting resources sustainably
 - Air quality
- Low energy efficiency in buildings
- High share of energy consumption for heating (residential sector):

- Heaters: 56,3 %

- DHW: 17,6 %

- Others: 26,1 %

 District Energy seen as a potential solution for air quality concerns

Background

- Biomass based heating and individual solutions
 - Harvesting resources sustainably
 - Air quality
- Low energy efficiency in buildings
- High share of energy consumption for heating (residential sector):

- Heaters: 56,3 %

- DHW: 17,6 %

- Others: 26,1 %

 District Energy seen as a potential solution for air quality concerns

Goals & Approach

DENMARK

MAP DISTRICT ENERGY POTENTIALS

- Heat & Cooling Demand
- Resources for DE
- Identify Potential
- Identify Costs of DE

ANALYZE ENERGY SYSTEM

- Reference model
- Integration of RES
- Integration and impact of DE
- Costs of new Energy System

SHOWCASE

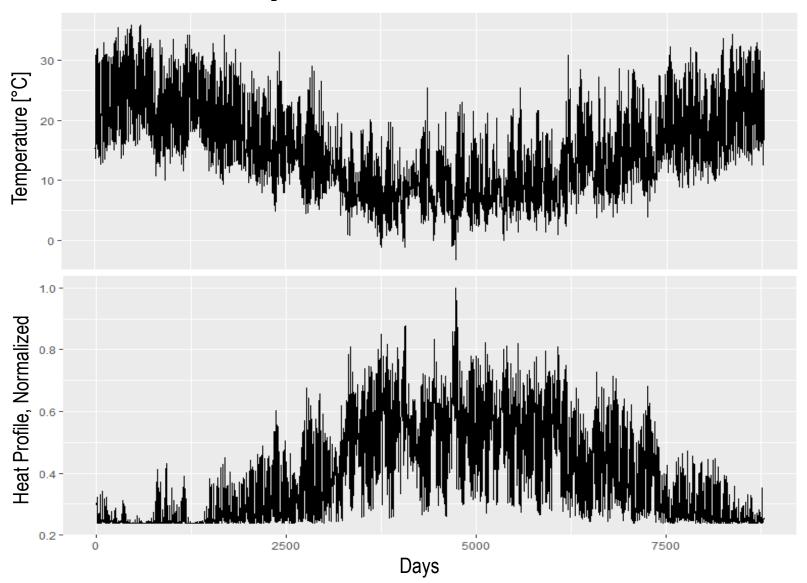
- Communicate results
- Train local stakeholders
- Showcase replication potential

MAP DISTRICT ENERGY POTENTIALS -> Regression analysis for heat demand model -> 1 km² grids

ANALYZE ENERGY SYSTEM-> Future Scenarios

- Cadaster (not geocoded)
- 'Population data
- Climate zones
- Land use and land cover
- Infrastructure

- Aggregated temperature data
- National statistics (Energiaabierta)
- Costs of new Energy System (?)


	2016	2050
Wind Capacity [MW]	1,042	3,875
Solar PV Capacity [MW]	1,129	12,022
CSP Capacity [MW]	0	4,835
NGas Capacity [MW]	4,973	5,488
Transmission line capacity [MW]	0	4,800
Electricity Demand [TWh]	73.1	180.9
Heat Demand (Res.) [TWh]	39.8	-
Cooling Demand (Res.) [TWh]	0.02	-

AALBORG UNIVERSITY DENMARK

Reference Energy System

- Medium changes in energy demand
- Medium developments in technologies
- Electricity demand: 2.7% per year increase
- Power plant generation capacity maintained overall
- Renewable electricity generation capacity increases:
 - Onshore Wind, PV, CSP, River hydro

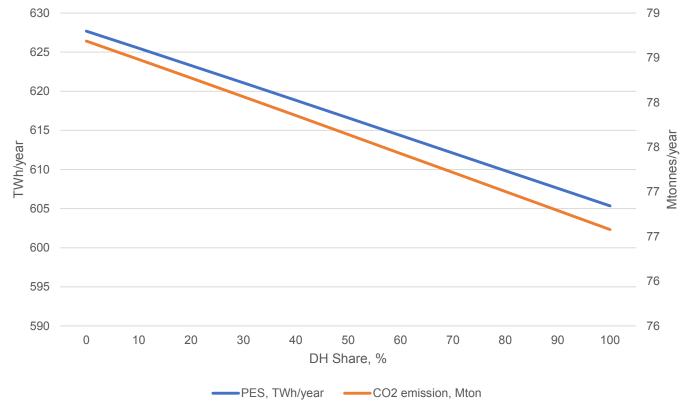
Heat demand profile

CHILE 2016: Reference Model Validation

Chile 2016	Reported	EP	Dif.	
PRIMARY ENERGY CONSUMPTION				
Fuels:	410.1	408.9	-0.3%	
Coal	87.7	87.1	-0.7%	
Oil	177.0	176.9	0.0%	
Gas	50.3	50.1	-0.4%	
Biomass	95.1	94.8	-0.4%	
Nuclear	0.0	0.0	0.0%	
Waste (for incineration)	0.0	0.0	0.0%	
Renewable Electricity:	28.2	28.2	0.0%	
Wind, onshore	2.5	2.5	-0.1%	
Wind, offshore	0.0	0.0	0.0%	
Solar PV	2.6	2.6	0.0%	
Geothermal power	0.0	0.0	0.0%	
Tidal power	0.0	0.0	0.0%	
River hydro	13.1	13.1	0.0%	
Other hydro	10.0	10.0	0.1%	

Chile 2016	Reported	EP	Dif.
ELECTRICITY			
Production	73.1		-0.5%
Power plants (condensing)	44.9	44.6	-0.7%
Renewable electricity	28.2	28.2	0.0%
Demand	73.1	72.7	-0.5%
Electricity demand	71.7	71.3	-0.5%
Flexible and transport	1.0	1.0	0.4%
Electricity for cooling	0.0	0.0	8.7%
Electric heating Individual	0.4	0.4	-0.4%
CO2 EMMISSIONS	0.0	87.6	

Does the reference meet 2050 ambitions?



- 70% renewable electricity: 74%
 - Only 17% of PES is intermittent renewable
- 65% of fuels are low in environmental pollutants
- Conforms to international climate change ambitions*

Overarching question – how can we make that happen?

Preliminary Scenarios

Description of Ref.:

- Medium changes in energy demand
- Medium developments in technologies
- Electricity demand: 2.7% per year increase
- Power plant generation capacity maintained overall
- Renewable electricity generation capacity increases:
 - Onshore Wind, PV, CSP, River hydro

- Include mapping inputs
- Update heating and cooling demand
- Costs: especially for fuels, district energy
- Correlate PM to energy consumption (mostly biomass)
- Decarbonize:
- Electrify heating, adjust capacities
- Implement DE, adjust all capacities
- Vary levels of changing demands
- Lower: higher levels of insulation, building standards
- Higher: increased access to energy and rise in comfort demands

Thank you!

Any questions/feedback?

