

3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 2017

R/R or R/S feed-in plants

What is most important for a feed-in plant, solar thermal or any other heat source?

- Generate as much heat as possible?
- Produce useful heat, at a correct temperature?
- Disturb the central heat production as little as possible?
- Generate heat as economically as possible?

A Feed-in Solar Thermal plant in Ystad

Owner – Ystad Fjärrvärme (public owned company)

Area – 36 collectors, 534 m² aperture area

Collector brand - SavoSolar

Contractors – 3 parts,

SavoSolar – all parts and all work on roof

Absolicon – deliver of feed-in sub-station, with control unit

Ystad fjärrvärme (DH) – all the rest with subcontractors and own staff

Responsible for tender documents and system design

Energianalys AB
Gunnar Lennermo
+46 322 61 17 54

gunnarl@energianalys.net

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

 A feed-in plant – connected to the DH network outside the main pumps in the system

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

 A feed-in plant – connected to the DH network outside the main pumps in the system

 A combination between Return/Return and Return/Supply feed-in

- A combination between Return/Return and Return/Supply feed-in
- Use a Flow controlled R/S-feed in system
- Have main control options regarding
 - Flow control in the solar circuit
 - Feed-in flow control, temperature or flow
 - Feed-in pump and control valve for flow adjustment

R/R – water is withdrawn from the return pipe and feed back to the return pipe

 Need a third pipe when installed together with a sub-station

- Do not need to feed-in at given lowest temperature
- Increase the return temperature in DH network
- Need very little pump pressure heed to give correct flow
- A very simple control function
- Can not create a flow in the main DH-network

R/S – water is withdrawn from the return pipe and feed back to the supply pipe

 Can be installed separate and together with a substation without any extra piping

- Do not affect the temperature in the DH system
- Need much more feed-in pressure head to overcome the differential pressure than a R/R system
- Must feed in a given temperature or at least higher than a given temperature
- More advanced control system
- Can create its own flow in the DH network

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Two basic R/S control systems

Temperature controlled –
 with a short circuit

SV4 is never allowed to close to 100 %. P2 guarantees a feed-in flow but SV4 control it.

 Flow controlled – without short circuit

SV4 do not exist

The feed-in flow is controlled by P2 and/or SV2

A small plant and a high differential pressure gives a more severe control

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DIS Copenhagen, 12-13 September 2017

<u>www.4dh.eu</u>

www.reinvestproject.eu

www.

Solar circuit control at R/S mode

The desire is to have a stable temperature at T2 independent of the radiation, 2 to 3 degrees higher than feed-in set-point, T4. Variable flow can provide a very long response time.

- Adjust the ST-pump speed to have a stable temperature at T1 (= $T2 + 2^{\circ}C$)
- Adjust the ST-pump speed relative to the radiation with help of the solar equation.

 Fixed ST-pump speed variate T3 relative to the radiation with help of the solar equation

Laminar or turbulent flow in the absorber??

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATIN Copenhagen, 12-13 September 2017

Feed-in circuit control at R/S mode

The desire is to ?????

 Adjust feed-in-pump speed so that the temperature setpoint can be maintained at T4

Need an extra function if T2 is to low, adjusted set-value "Might" need a shorter response-time than a standard temperature sensor can give

 Adjust feed-in-pump speed relative to the flow in the solar circuit

Do not guarantee a correct feed-in temperature at T4 if not any extra control functions is used

Need a "high" flow resolution??

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

www.reinvestproject.eu

www.heatroadmap.eu

Feed-in circuit control at R/S mode, flow controlled layout

How can a correct feed-in flow be created?

- Only with the feed-in pump, P2
- Only with the control valve SV2
- A combination between the feed-in pump, P2, and a control valve, SV2
 - First SV2 then P2 (Δ p1)
 - First P2 then SV2

First - kind of control system, flow or temperature Second - equipment used to gain correct temperature

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENER Copenhagen, 12-13 September 2017

Experience so far, focus on R/S feed-in

- Vacuum degassing works, perhaps not necessary but strongly recommended
- It is easier to get a proper flow or temperature using a flow sensor, both in the ST circuit and at the feed-in, than using a temperature sensor
- A pump-speed related to differential pressure and flow control with a control valve is best at small flows, and pump-speed flow control at large flows
- The change between R/R and R/S, and revers, requires careful control planning

Return/Supply feed-in – demands from DH

Need a discussion (some requirements are listed below)

- Temperature tolerance, +/- X°C or only + X°C
- The cold plug at start, all at once, towards S or R
- Risk of fatigue, varying temperatures, cycles a day
- Change in feed-in heat-power, kW/minute
- Change in feed-in flow, I/s per minute
- Risk for water hammers, fast change in flow
- Maximum feed-in heat-power in relation to the current DH heat-power requirement

Plants with R/R+R/S need more rules

INVEST

3rd international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Thank you Questions

