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Introduction



Introduction

• Limit the increase of global average temperature to 2 ◦C

• CO2 emissions reduction by 80%-95% in 2050 compared to
19901

• The major future renewable energy: wind and solar energy
• Drastically reduction of CO2 emissions not only in the
electricity sector2

1European Union, A Roadmap for moving to a competitive low carbon
economy in 2050.
2National emissions reported to the UNFCCC and to the EU Greenhouse Gas
Monitoring Mechanism, European Environment Agency.
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Research questions

• Is increasing the renewable penetration enough to
achieve a low carbon energy system?

• If not, what is the required CO2 price to ensure the
decarbonisation?

• What are the cost-optimal system configurations under
specific CO2 emission reductions?
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Methodology: PyPSA Model3

Electricity and heating coupled, hourly-resolved
one-node-per-country

electricity
rural heat
urban heat

existing
under construction
existing
under construction

3Brown, Hörsch, and Schlachtberger, “PyPSA: Python for Power System
Analysis”.
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Methodology: Optimisation

• A techno-economical joint optimisation problem

• Technical and physical constraints, assuming perfect
competition and foresight

• Renewable self-sufficient for individual country: weakly
homogeneous layout

min
Gn,s,En,s,
Fℓ,gn,s,t

[∑
n,s

cn,s ·Gn,s +
∑
n,s

ĉn,s · En,s +
∑
ℓ

cℓ · Fℓ +
∑
n,s,t

on,s,t · gn,s,t

]

sub. to
∑
s

gn,s,t +
∑
ℓ

αn,ℓ,t · fℓ,t = dn,t ↔ λn,t ∀n, t

ggrossi,V RES = γgross
i

∑
t,n∈i

dn,t ∀i
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Methodology: Data

• Electricity demand is from ENTSO-e
• Heat demand is modelled by Heating Degree Hour (HDH)
• Heating bus is separated proportionally into rural and
urban heat
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• Electricity demand is from ENTSO-e
• Heat demand is modelled by Heating Degree Hour (HDH)
• Heating bus is separated proportionally into rural and
urban heat

• Wind and solar capacity factors are calculated based on
reanalysis dataset (CFSR) through REatlas

• The geographical potentials of wind and solar are
estimated
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Results I: LCOE for configuration sweep

• High VRES
penetrations do not
necessarily lead to
low CO2 emissions

• The CO2 price has
limited impact on
the cost-optimal
wind/solar mix
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Results II: Target configuration

• The minimum of LCOE excl.
CO2 tax determines the
cost-optimal configuration

• The LCOE shows low
sensitivity around the
optimum

• A higher CO2 price curtails
less VRES and utilises
VRES more efficiently

• The high CO2 price forces
the choice of expensive
heat supply
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Results III: Germany dispatch time series

5%, 280 e/tCO2
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Results III: Germany dispatch time series
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Results IV: Spatial distribution

System cost
5%, 380 /tCO2
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Results IV: Spatial distribution

Thermal energy
5%, 380 /tCO2
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Results V: Aggregated system configurations

Transmission volume Optimal volume Todays volume
Emission level 20% 10% 5% 20% 10% 5%
Transmission volume 141 176 196 32 32 32
CO2 price 160 260 380 200 320 580
Penetration 0.46 0.57 0.64 0.5 0.64 0.7
Wind/solar mix 0.77 0.8 0.8 0.73 0.74 0.79
LCOE excl. CO2 tax 43.2 49.8 55.4 45.4 53.9 60.9
Resistive heater 307 389 464 434 581 673
Heat pump 69 113 148 67 103 143
CHP 363 243 165 464 336 268
Hot water tank 7,768 27,823 91,796 17,232 57,818 156,753
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Conclusions

• Is increasing the renewable
penetration enough to
achieve a low carbon energy
system?

• If not, what is the required
CO2 price to ensure the
decarbonisation?

• What are the cost-optimal
system configurations under
specific CO2 emissions?

•
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Conclusions

• Is increasing the renewable
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achieve a low carbon energy
system?

• If not, what is the required
CO2 price to ensure the
decarbonisation?

• What are the cost-optimal
system configurations under
specific CO2 emissions?

• Only installing high
capacities of renewable is
not enough

• A significantly high CO2 price
is required to disincentivise
gas usage

• The flatness around
cost-optimal CO2 price allows
flexibilities
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Sensitivity

Motivation

Cost optimal scenarios
depend on the specific
input data

Potential climate change
may change the future
demand profile

Evaluate the robustness of
target configurations

Scenarios

Temperature increase
influences the heat and
cooling demand

Retrofitting may lower the
heat demand

Cost parameter

Possible demand-side
management
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Transition pathways

Motivation

Seek the robust build-up of
renewable capacities

Analyse the required levels
of economic instruments

Make sure that the
transmission capacities
could fulfill the need of
expanding renewable

Methodology

Logistic growth for
renewable capacities

Constrain the CO2

emissions as a function of
time

Understand the next
feasible investments in
decarbonisation
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Thanks for your attention.
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