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Introduction



Introduction

- Limit the increase of global average temperature to 2 °C

- COy emissions reduction by 80%-95% in 2050 compared to
1990"

- The major future renewable energy: wind and solar energy

- Drastically reduction of COy emissions not only in the
electricity sector?

"European Union, A Roadmap for moving to a competitive low carbon
economy in 2050.

2National emissions reported to the UNFCCC and to the EU Greenhouse Gas
Monitoring Mechanism, European Environment Agency.
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Research questions

- Is increasing the renewable penetration enough to
achieve a low carbon energy system?

- If not, what is the required CO, price to ensure the
decarbonisation?

- What are the cost-optimal system configurations under
specific CO, emission reductions?
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Methodology: PyPSA Model®

Electricity and heating coupled, hourly-resolved
one-node-per-country

wind, solar;
bydro, OCGT; import _export
electricity
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3Brown, Horsch, and Schlachtberger, “PyPSA: Python for Power System
Analysis”.



Methodology: Optimisation

- A techno-economical joint optimisation problem

- Technical and physical constraints, assuming perfect
competition and foresight

- Renewable self-sufficient for individual country: weakly
homogeneous layout
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Methodology: Data

- Electricity demand is from ENTSO-e
- Heat demand is modelled by Heating Degree Hour (HDH)

- Heating bus is separated proportionally into rural and
urban heat
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Methodology: Data

- Electricity demand is from ENTSO-e

- Heat demand is modelled by Heating Degree Hour (HDH)

- Heating bus is separated proportionally into rural and
urban heat

- Wind and solar capacity factors are calculated based on
reanalysis dataset (CFSR) through REatlas

- The geographical potentials of wind and solar are
estimated
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Results I: LCOE for configuration sweep
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Results Il: Target configuration
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Results Il: Target configuration
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Results Ill: Germany dispatch time series
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Results Ill: Germany dispatch time series

5%, 280 €/tC04 5%, 380 €/tC04

soar = electic ) '} == DEloa solar = electic
- ror pHs ] ] - import ror pHs
250] mm onwng i 11 el Cel m cxgor 48 250] mm onwng 1 el Celmm cuport
H 1 )V ] \ 5 | = oftwing
B ] g
Sa00 - & f (( Sa00
H H
H N H
H | B AR Fis0
fio o
§ £ s
0 o
125 125
100 10
\
\
2 75 '~ = 75 '~
g g
I I
£ 5
I EI
== DEload gas boller
2] heat pump - e heat 252~ ot loaa watertarks discharger
resistive heater water tanks charger = heatpump R CHP heat
~sof mm water tanks discharer —sof = resistive heater watertanks charger
@ & o o 3 o7 o o w o o o 3 o w o
feb febo
2015 2035



Results IV: Spatial distribution

System cost
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Results IV: Spatial distribution

Thermal energy

Thermal capacity
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Results V: Aggregated system configurations

Transmission volume Optimal volume Todays volume
Emission level 20% 10% 5% 20% 10% 5%
Transmission volume 141 176 196 32 32 32
CO2 price 160 260 380 200 320 580
Penetration 0.46 0.57 0.64 0.5 0.64 0.7
Wind/solar mix 0.77 0.8 0.8 0.73 0.74 0.79
LCOE excl. CO2 tax 432 49.8 55.4 45.4 53.9 60.9
Resistive heater 307 389 Lok 434 581 673
Heat pump 69 113 148 67 103 143
CHP 363 243 165 L64 336 268
Hot water tank 7,768 27,823 91,796 | 17,232 57,818 156,753
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Conclusions

- Isincreasing the renewable - Only installing high
penetration enough to capacities of renewable is
achieve a low carbon energy not enough
system? - A significantly high CO, price

- If not, what is the required is required to disincentivise
CO, price to ensure the gas usage

decarbonisation?
- The flatness around

- What are the cost-optimal cost-optimal CO, price allows
system configurations under flexibilities
specific CO, emissions?
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Sensitivity

Motivation Scenarios

Cost optimal scenarios Temperature increase
depend on the specific influences the heat and
input data cooling demand

Potential climate change Retrofitting may lower the
may change the future heat demand

demand profile
Cost parameter

Evaluate the robustness of

. Possible demand-side
target configurations

management

12



Transition pathways

Motivation Methodology

Seek the robust build-up of Logistic growth for
renewable capacities renewable capacities
Analyse the required levels Constrain the CO,

of economic instruments emissions as a function of
Make sure that the time

transmission capacities
could fulfill the need of
expanding renewable

13



Thanks for your attention.
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