

A novel bidding method for combined heat and power units in district heating systems

<u>Daniela Guericke¹</u>, Anders N. Andersen², Ignacio Blanco¹, Henrik Madsen¹ <u>dngk@dtu.dk</u>

¹ Department of Applied Mathematics and Computer Science, Technical University of Denmark ² EMD International A/S, Aalborg, Denmark

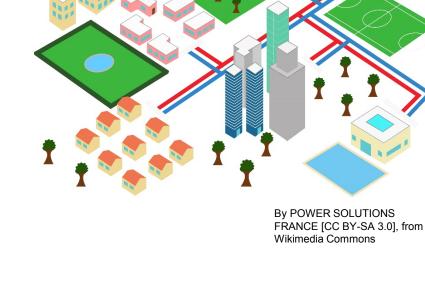
4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 14/09/2018

DTU Compute

Department of Applied Mathematics and Computer Science

Motivation

Setting:


District heating provider with a portfolio of production units including combined heat and power (CHP) plant

Goal:

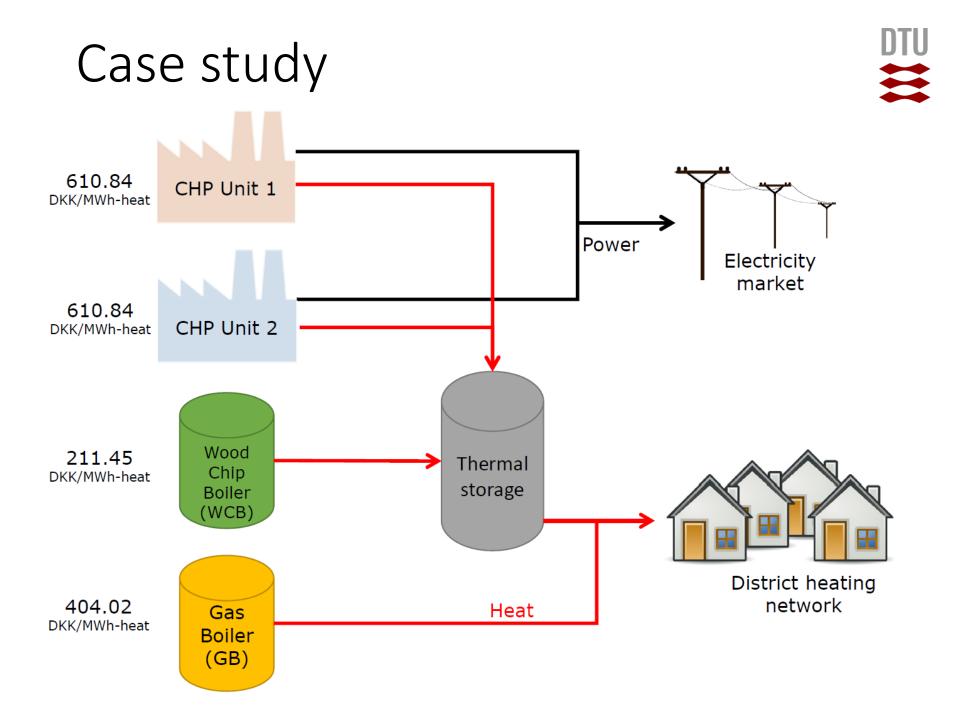
Optimize the daily production of heat to cover the heat demand at minimal cost

Opportunity:

- The operationally expensive CHP plant produces electricity while producing heat.
- Trade this electricity on the dayahead market, if the income from the market lowers the overall cost.
- But the electricity price is uncertain.

Novel bidding method

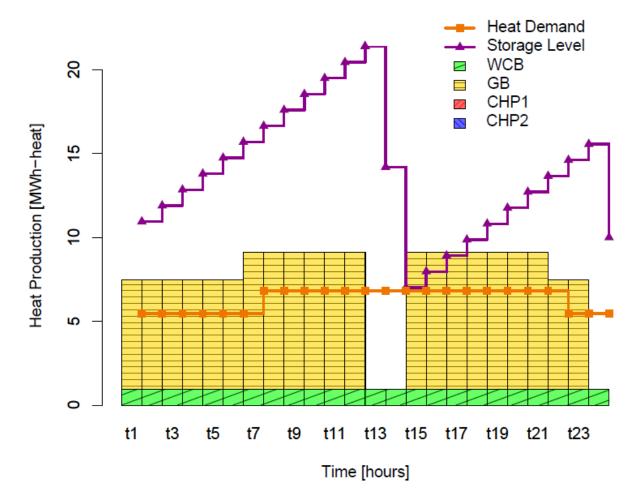
Related bidding methods for CHP units in literature:


[Conejo et al., 2002, Rodriguez and Anders, 2004, Schulz et al., 2016, Dimoulkas and Amelin, 2014, Ravn et al., 2004]

- \rightarrow Take a power producer perspective
- →all methods plan bids for the CHP units, if the electricity price forecast indicates its beneficial

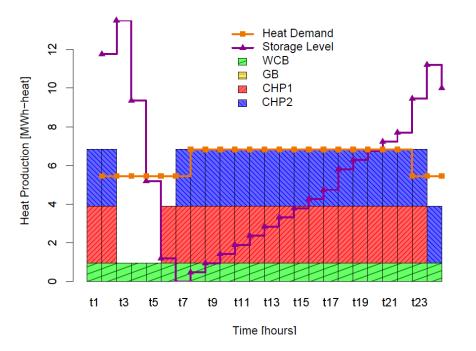
Our approach:

Heat Unit Replacement Bidding (HURB) method


- Make use of the fact that we have to produce the heat for the district heating network anyway
- Bidding amount: replace heat production of other units by CHP production
- Bidding price: price where we are indifferent whether we produce with the CHP plant or with the other heat unit
- We use a (mixed-integer) linear program to determine the cost-minimal production in the algorithm

HURB – Step 1

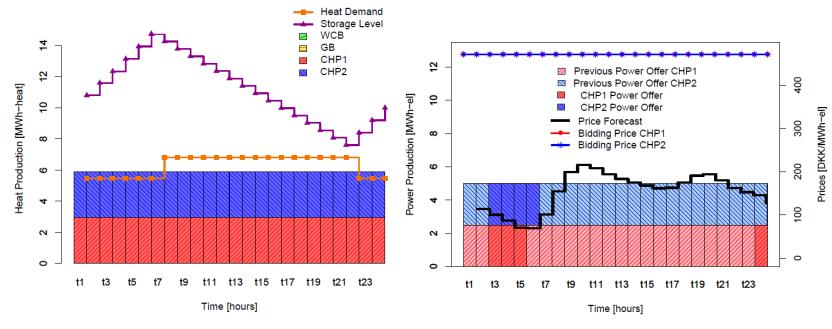
Optimize heat production without market participation



HURB – Step 2

Replace iteratively heat-only units by CHP production (in descending order of operational costs)

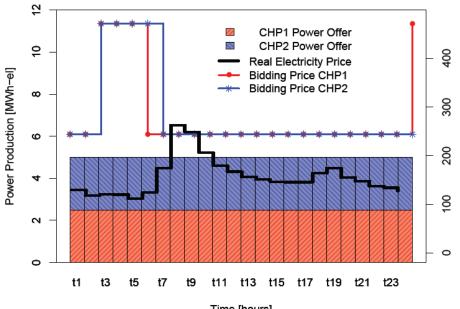
1. Iteration: Replacing the gas boiler (GB)



HURB – Step 2

Replace iteratively heat-only units by CHP production (in descending order of operational costs)

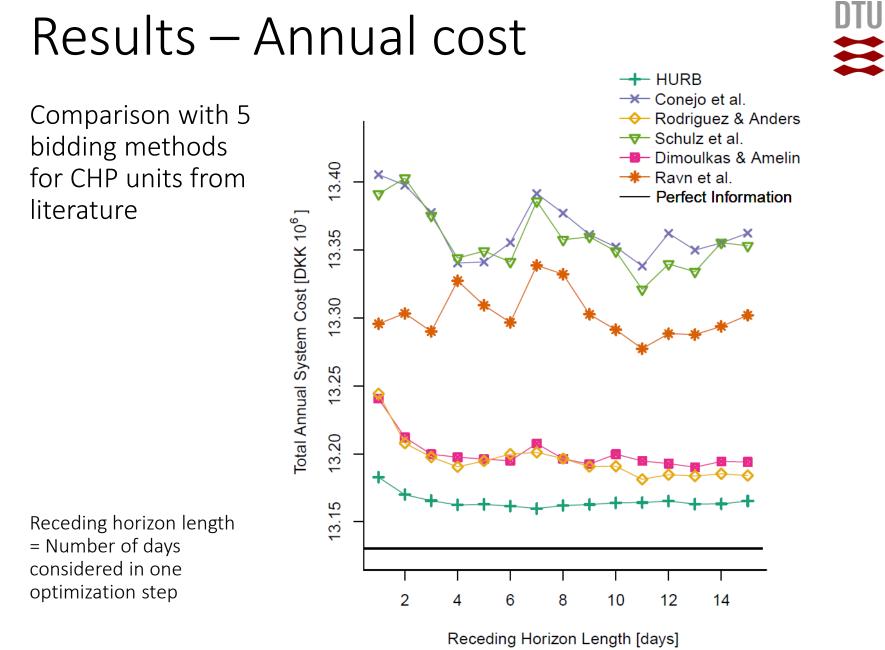
2. Iteration: Replacing the wood chip boiler (WCB)



- Bidding amount: Power production amount of the CHPs
- Bidding price: Cost CHP Cost WCB = (610.84 211.45) * 1.18 = 471.279

Evaluation

Use real electricity prices instead of forecasts



Time [hours]

Evaluation

- Comparison with the mentioned 5 bidding methods from literature [Conejo et al., 2002, Rodriguez and Anders, 2004, Schulz et al., 2016, Dimoulkas and Amelin, 2014, Ravn et al., 2004]
- Evaluation with real electricity prices from the NordPool market.
- Evaluation with different lengths of receding horizon to optimize the storage behavior.
- Electricity price forecast: Seasonal ARIMA model
- Heat demand and unit data from energyPRO test case (provided by EMD International)

Results - Bids

DTU

Percentage of hours with bids and won bids in one month averaged over several samples

Method	Receding Horizon	CHP 1		CHP 2	
		Bids	Won	Bids	Won
HURB Worst	1	98.91	41.95	98.70	41.91
HURB Avg.	-	99.79	42.19	99.75	42.15
HURB Best	10	99.89	42.28	99.87	42.26
Conejo et al.	10	44.92	39.34	44.92	39.31
Rodriguez & Anders	5	82.52	35.85	82.40	35.82
Schulz et al.	12	45.02	18.54	45.01	18.53
Dimoulkas & Amelin	12	75.55	26.56	75.55	26.55
Ravn et al.	5	44.84	32.58	44.83	32.57

We can take advantage of the portfolio of heat production units and base the bidding amounts and prices on the heat production.

Summary

Novel bidding method for district heating operators with CHP plants

- Iteratively replaces heat production to determine amount and prices
- Leads to lower systems costs compared to considering prices and amounts based on forecasts
- Preprint available: <u>https://arxiv.org/abs/1810.10757</u>

Outlook

- Include uncertain production of e.g. solar thermal units
- Include electricity based heat production e.g. electric boilers, heat pumps

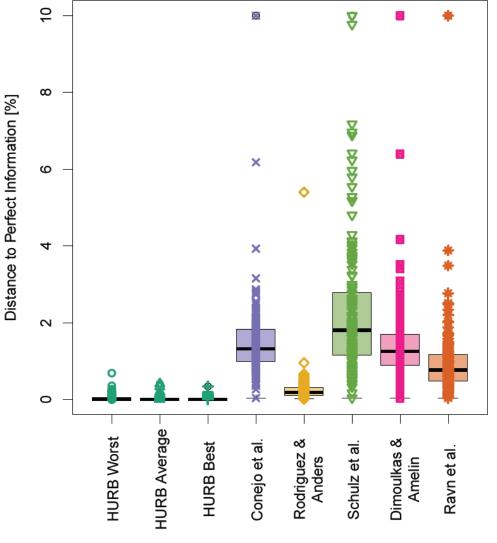
Acknowledgements:

Center for IT-Intelligent Energy Systems in cities (1035-00027B)

References

Conejo, A. J., Nogales, F. J., and Arroyo, J. M. (2002). Price-taker bidding strategy under price uncertainty. IEEE Trans. Power Syst., 17(4):1081–1088.

Dimoulkas, I. and Amelin, M. (2014). Constructing bidding curves for a CHP producer in day-ahead electricity markets. In 2014 IEEE Int. Ener. Conf., pages 487–494.


Ravn, H. V., Riisom, J., Schaumburg-Mueller, C., and Straarup, S. N. (2004). Modelling Danish local CHP on market conditions. In Proc. 6th IAEE European Conference: Modelling in Energy Economics and Policy.

Rodriguez, C. P. and Anders, G. J. (2004). Bidding strategy design for different types of electric power market participants. IEEE Trans. Power Syst., 19(2):964–971.

Schulz, K., Hechenrieder, B., and Werners, B. (2016). Optimal operation of a CHP plant for the energy balancing market. In Operat. Res. Proceed. 2014, pages 531–537. Springer.

Results – 144 samples

Electricity prices from SE4 and DE prices

