

State of the art in the States: Applying an analytic framework for flexibility in US district energy systems

Daniel Møller Sneum, PhD fellow, DTU

4th International Conference on Smart Energy Systems and 4th Generation District Heating 13 November 2018

DARTMOUTH

Agenda

PART I

Defining flexibility

PART II

Defining a taxonomy for barriers

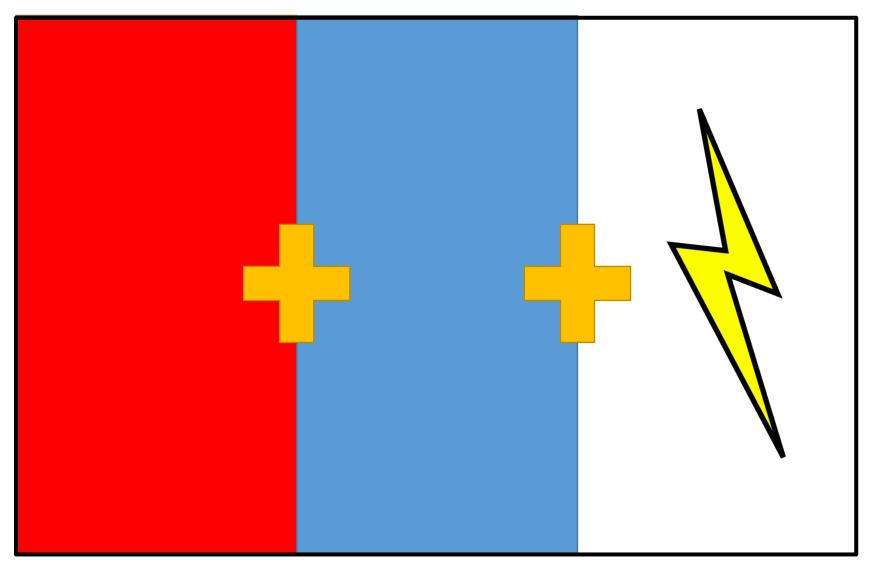
PART III

Applying a taxonomy for barriers

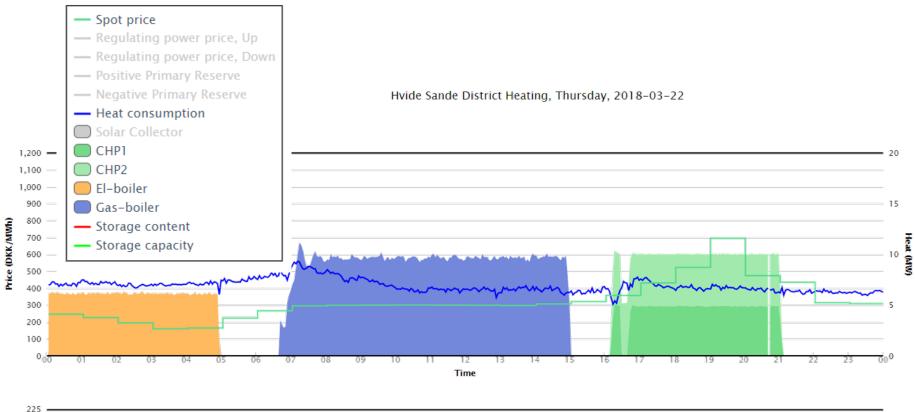
PART IV

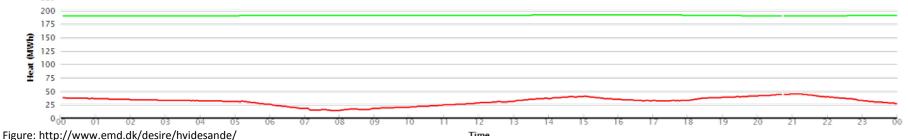
Concluding remarks

DEFINING FLEXIBILITY



Flexible district energy exists. But not all over.


- "If something exists, then it must be possible"
- Boulding's first law


Finding out why: Barriers for integration of variable renewable energy with DE systems

DISTRICT ENERGY = DISTRICT ¹ Flex4RES HEATING + COOLING + (ELEC.)

PRACTICE: DE can operate on market

PRACTICE: DE can integrate renewables Kilogram CO2 per MWh electricity Heat (MW)

Time

DEFINING A TAXONOMY FOR BARRIERS

Barrier characteristics

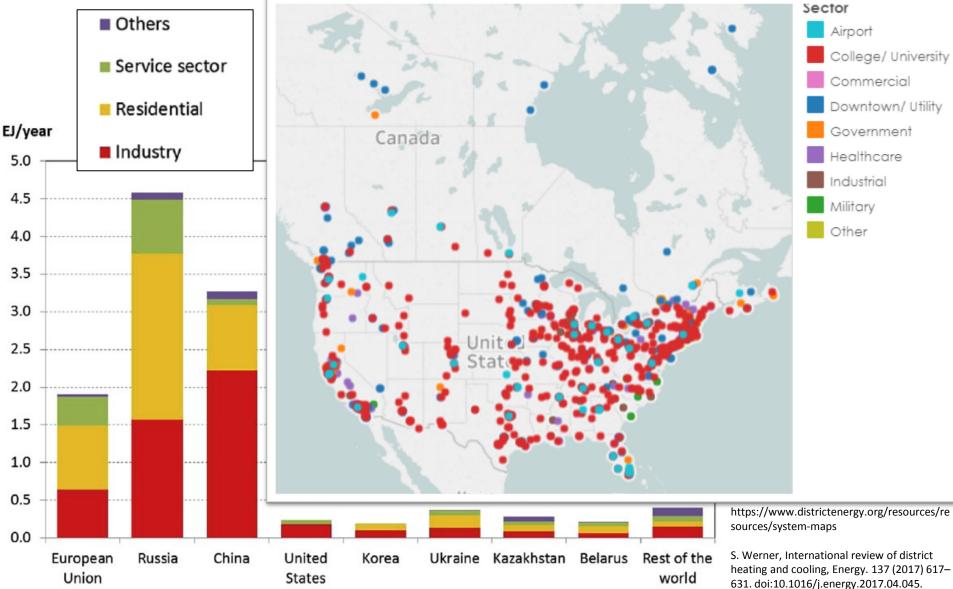
Technologies

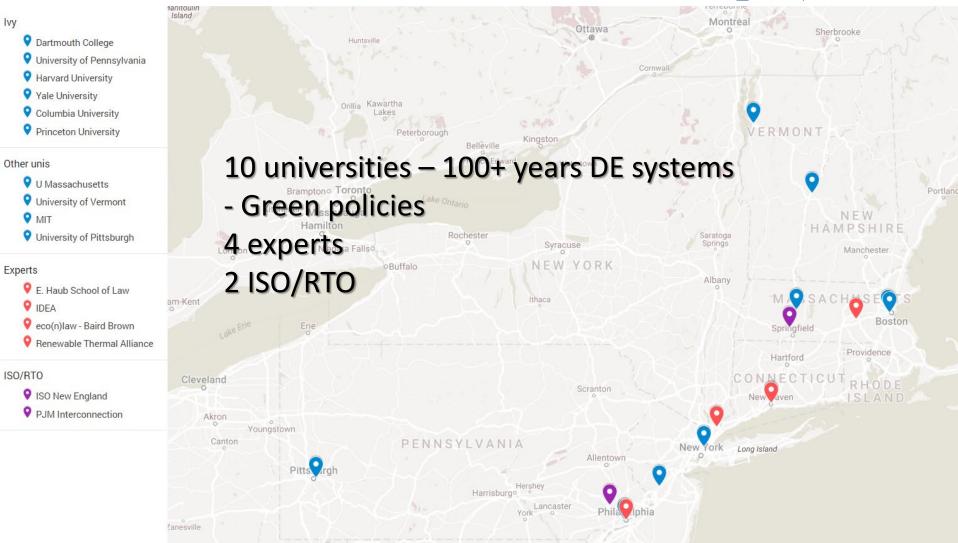
Heat-only boiler Heat pump Electric boiler CHP Heat storage

Barrier categories

Barrier category	Barrier sub-category	References
Economic	Financing and technology risk	[1-15,17-22]
	Investment subsidies	

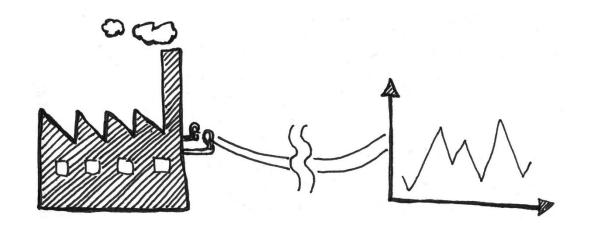
Combined: Taxonomy


Barrier category	Barrier sub- category	Barrier name	Under which conditions is it a barrier?	Which technologies are affected?	Where in the project life cycle is the impact?	Which decision- level does the barrier stem from?
Economic						
Operational						
signalling						
Permitting						
Technological						
Physical						
Bounded						
rationality						
Commitment						

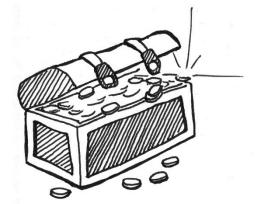


APPLYING THE TAXONOMY FOR BARRIERS ON US DE SYSTEMS

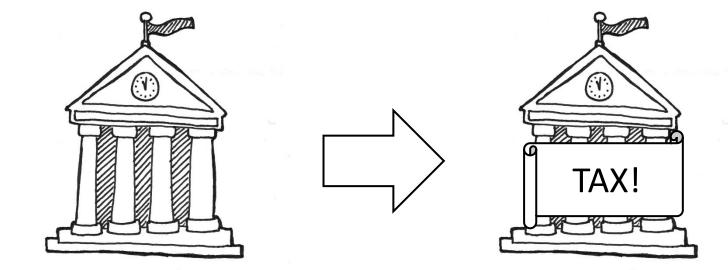
Heat delivery (2014) and deployment



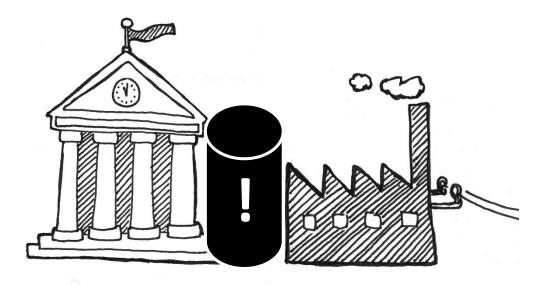
District energy in the Northeast



			Technology		
Conditions in the DE-electricity interface	Sub-category	Barrier name	type	Project life cycle	Level of origin
Operational signalling	Electricity grid tariffs and utility rates	Signals limited by utility rate structure	CHP and P2H	Operation phase	Regional
-	-	Prices too low to incentivise flexibility	All	Operation phase	Regional
-	Energy markets	Access to markets important	CHP and P2H	Operation phase	Regional
Economy	Financing and technology risk	Limited ability to self-finance due to lack of understanding from rating agencies	All	Investment and financing phase	Service and technology providers
-	-	Limited funds	All	Investment and financing phase	In plant/on premises
Permitting	Other regulatory conditions	Transition from attractive to less attractive regulatory regime	CHP and P2H	Operation phase	National
Technology	Cost and technological maturity	Hot water conversion limited by cost	Thermal storage	Tendering phase	Service and technology providers
Physical	Land availability	Limited land available for thermal storage	Thermal storage	Planning phase	In plant/on premises
Stakeholder bounded rationality	Institutional bounded rationality	Hot water conversion constrained by limited information	Thermal storage	Feasibility study phase/Scoping phase	In plant/on premises
-	-	Limited understanding of benefits of flexibility	All	Operation phase	In plant/on premises
Stakeholder commitment	Institutional commitment	Buying indulgences instead of local action	All	Operation phase	In plant/on premises
-	-	Humans in the electricity consumption/production loop for security	CHP and P2H	Operation phase	In plant/on premises
-	-	Humans in the loop for optimal operation	CHP and P2H	Operation phase	In plant/on premises
-	Individual commitment	Lacking sense of need	CHP and P2H	Operation phase	In plant/on premises


Conditions in the DE-electricity interface	sub-category	Barrier name	Technology type	Project life cycle	Level of origin
Operational signalling	Electricity grid tariffs and utility rates	Signals limited by utility rate structure	CHP and P2H	Operation phase	Regional
-	-	Prices too low to incentivise flexibility	All	Operation phase	Regional
-	Energy markets	Access to markets important	CHP and P2H	Operation phase	Regional

Conditions in the DE-electricity interface	Sub-category		Technology type	Project life cycle	Level of origin
Economy	Financing and technology risk	Limited ability to self- finance due to lack of understanding from rating agencies		and	Service and technology providers
-	-	Limited funds	All	Investment and financing phase	In plant/on premises


Conditions in the					
DE-electricity			Technology	Project life	Level of
interface	Sub-category	Barrier name	type	cycle	origin
		Transition from			
		attractive to less	CHP and	Operation	National
	Other regulatory	attractive regulatory	P2H	phase	National
Permitting	conditions	regime			

Conditions in the DE-electricity interface			•	Project life cycle	Level of origin
	Cost and technological maturity	Hot water conversion limited by cost	Thermal storage	Tendering phase	Service and technology providers

Conditions in the	2				
DE-electricity			Technology	Project life	Level of
interface	Sub-category	Barrier name	type	cycle	origin
		Limited land	Thermal	Dlanning	In plant/on
		available for thermal		phase	In plant/on premises
Physical	Land availability	storage	storage	phase	premises

Conditions in the DE-electricity interface	Sub-category		•••	Project life cycle	Level of origin
Stakeholder bounded rationality	Institutional bounded rationality	Hot water conversion constrained by limited information	Thermal storage	Feasibility study phase/Scop ing phase	In plant/on premises
_	-	Limited understanding of benefits of flexibility	All	Operation phase	In plant/on premises

Conditions in the DE-electricity interface	Sub-category	Barrier name	Technology type	Project life cycle	Level of origin
Stakeholder	Institutional commitment	Buying indulgences instead of local action	All	Operation phase	In plant/on premises
-	-	Humans in the electricity consumption/produc tion loop for security		Operation phase	In plant/on premises
-	-	Humans in the loop for optimal operation	CHP and P2H	Operation phase	In plant/on premises
	Individual commitment	Lacking sense of need	CHP and P2H	Operation phase	In plant/on premises

CONCLUDING REMARKS

Robust taxonomy: Caught most; few new ...but never finished

Getting more flexible US DE

Plants' priorities: Safe, cheap, green

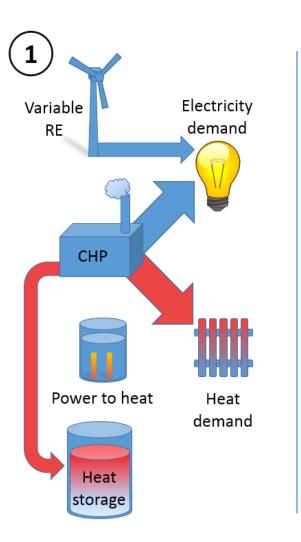
Give them

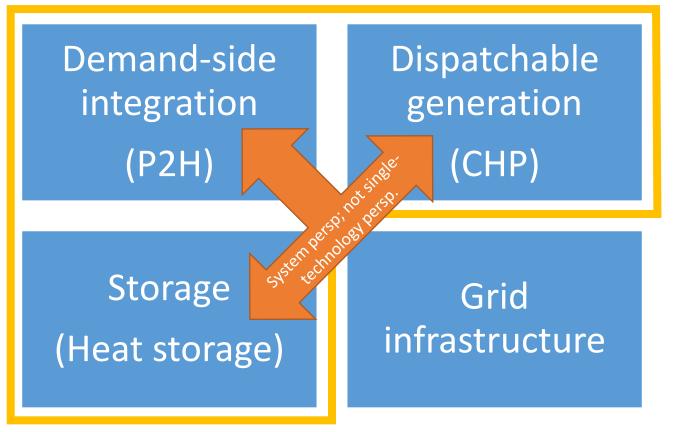
- Signals and incentives markets/tariffs
- Water thermal storages important
- Information costs, opportunities, technologies

In collaboration with Professor Elizabeth Wilson Arthur L. Irving Institute for Energy and Society Dartmouth College

With support from Otto Mønsted Foundation P.A. Fiskers Fond

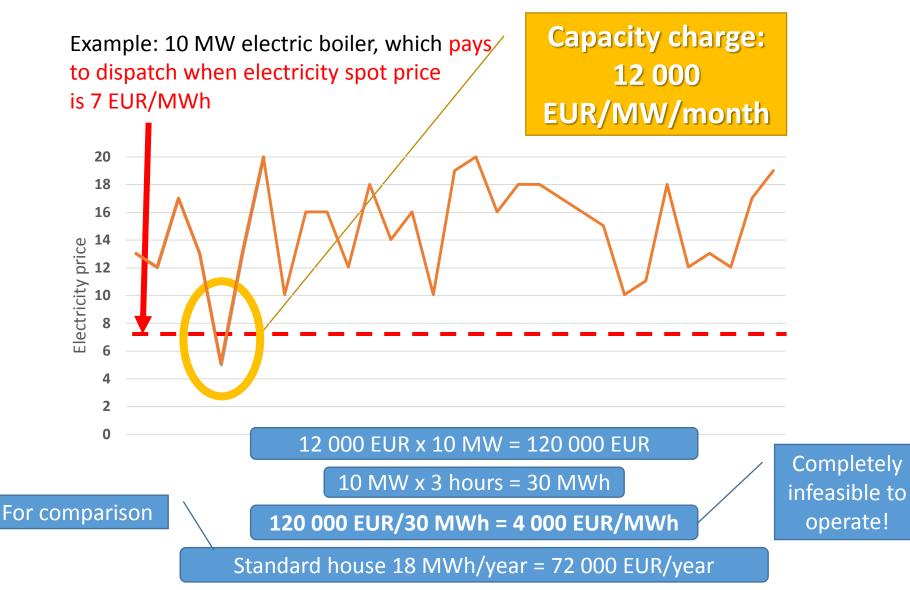
Daniel Møller Sneum PhD Fellow Systems Analysis Division

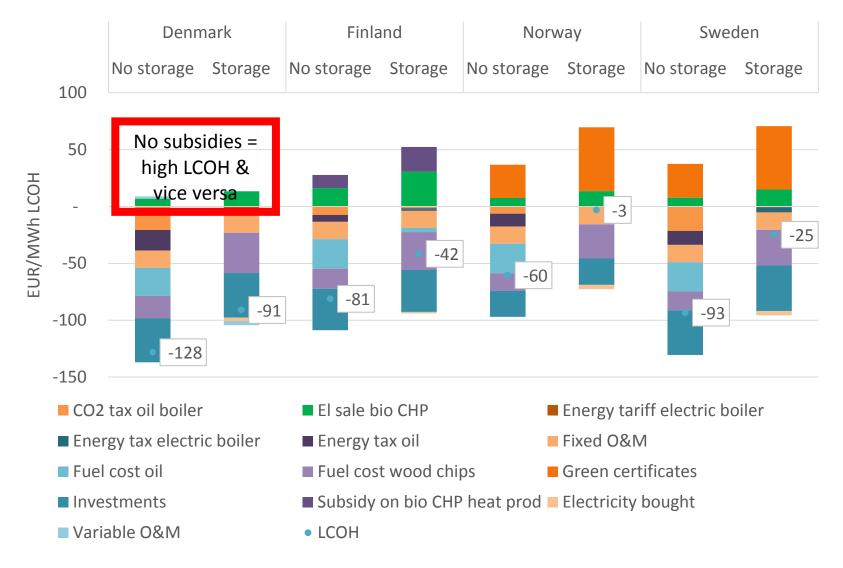

Danmarks Tekniske Universitet DTU Management Engineering Produktionstorvet Building 426, room 033A 2800 Lyngby Mob. +45 93511642 <u>dasn@dtu.dk</u> http://www.sys.man.dtu.dk/Research/EER


References – taxonomy structure

[1]	J. Steinbach, E. Popovski, T. Fleiter, E. Chassein, I. Bedoya, Policy recommendations to decarbonise European heating and cooling systems, 2017.
[2]	S. Leete, J. Xu, D. Wheeler, Investment barriers and incentives for marine renewable energy in the UK: An analysis of investor preferences, Energy Policy. 60 (2013) 866–875. doi:10.1016/j.enpol.2013.05.011.
[3]	C. Bergaentzle, K. Skytte, E.R. Soysal, L. Boscan, O.J. Olsen, Regulatory barriers for activating flexibility in the Nordio-Baltic electricity market, Int. Conf. Eur. Energy Mark. EEM. (2017). doi:10.1109/EEM.2017.7981948.
[4]	M.A. Brown, D.M.S. Building, B.K. Sovacool, Barriers to the diffusion of climate-friendly technologies, Int. J. Transf. Commer. 10 (2011) 43–62. doi:10.1504/IJTTC.2011.038453.
[5]	International Renewable Energy Agency, Renewable Energy in District Heating and Cooling: A sector roadmap for REmap, Abu Dhabi, 2017.
[6]	F. Hvelplund, P.A. Østergaard, N.I. Meyer, Incentives and barriers for wind power expansion and system integration in Denmark, Energy Policy. 107 (2017) 573–584. doi:10.1016/j.enpol.2017.05.009.
[7]	F. Mosannenzadeh, M.R. Di Nucci, D. Vettorato, Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach, Energy Policy. 105 (2017) 191–201. doi:10.1016/j.enpol.2017.02.007.
[8]	I.J. Pérez-Arriaga, Regulation of the Power Sector, 1st ed., Springer-Verlag London, 2013. doi:10.1007/978-1-4471-5034-3.
[9]	IEA, The power of transformation, IEA, Paris, 2014. doi:10.1007/BF01532548.
[10]	S. Luthra, S. Kumar, R. Kharb, M.F. Ansari, S.L. Shimmi, Adoption of smart grid technologies: An analysis of interactions among barriers, Renew. Sustain. Energy Rev. 33 (2014) 554–565. doi:10.1016/j.rser.2014.02.030.
[11]	C. Blumstein, B. Krieg, L. Schipper, C. York, Overcoming social and institutional barriers to energy conservation, Energy. 5 (1980) 355–371. doi:10.1016/0360-5442(80)90036-5.
[12]	J.P. Painuly, Barriers to renewable energy penetration: A framework for analysis, Renew. Energy. 24 (2001) 73–89. doi:10.1016/S0960-1481(00)00186-5.
[13]	S. Reddy, J.P. Painuly, Diffusion of renewable energy technologies-barriers and stakeholders' perspectives, Renew. Energy. 29 (2004) 1431–1447. doi:10.1016/j.renene.2003.12.003.
[14]	J.S. González, R. Lacal-Arántegui, A review of regulatory framework for wind energy in European Union countries: Current state and expected developments, Renew. Sustain. Energy Rev. 56 (2016) 588–602. doi:10.1016/j.rser.2015.11.091.
[15]	E. Cagno, E. Worrell, A. Trianni, G. Pugliese, A novel approach for barriers to industrial energy efficiency, Renew. Sustain. Energy Rev. 19 (2013) 290–308. doi:10.1016/j.rser.2012.11.007.
[16]	M. Soshinskaya, W.H.J. Crijns-Graus, J.M. Guerrero, J.C. Vasquez, Microgrids: Experiences, barriers and success factors, Renew. Sustain. Energy Rev. 40 (2014) 659–672. doi:10.1016/j.rser.2014.07.198.
[17]	U. Collier, Renewable heat policies Delivering clean heat solutions for the energy transition, IEA Publ. (2018). www.iea.org/t&c/.
[18]	E. Sandberg, D.M. Sneum, E. Tromborg, Framework conditions for Nordic district heating similarities and differences, and why Norway sticks out, Energy. 149 (2018) 105–119. doi:10.1016/j.energy.2018.01.148.
[19]	C. Meath, M. Linnenluecke, A. Griffiths, Barriers and motivators to the adoption of energy savings measures for small- and medium-sized enterprises (SMEs): The case of the ClimateSmart Business Cluster program, J. Clean. Prod. 112 (2016) 3597–3604. doi:10.1016/j.jclepro.2015.08.085.
[20]	M. Olsthoorn, J. Schleich, M. Klobasa, Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective, Energy Policy. 76 (2015) 32–42. doi:10.1016/j.enpol.2014.11.015.
[21]	N. Good, K.A. Ellis, P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid, Renew. Sustain. Energy Rev. 72 (2017) 57–72. doi:10.1016/j.rser.2017.01.043.
[22]	S. Sorrell, E. O'Malley, J. Schleich, S. Scott, The economics of energy efficiency, 1st ed., Edward Elgar Publishing Limited, Cheltenham, 2004.
[23]	E. Cagno, E. Worrell, A. Trianni, G. Pugliese, A novel approach for barriers to industrial energy efficiency, Renew. Sustain. Energy Rev. 19 (2013) 290–308. doi:10.1016/j.rser.2012.11.007.
[24]	W.H. Golove, J.H. Eto, Market Barriers to Energy Efficiency: A Critical Reappraisal of the Rationale for Public Policies to Promote Energy Efficiency, Energy Environ. 26 (1996) 66. doi:10.1177/0042098011427189.
[25]	R. Gonzales, Wind Integration for New York 's Energy Markets New York in Perspective, (2011) 1–18.

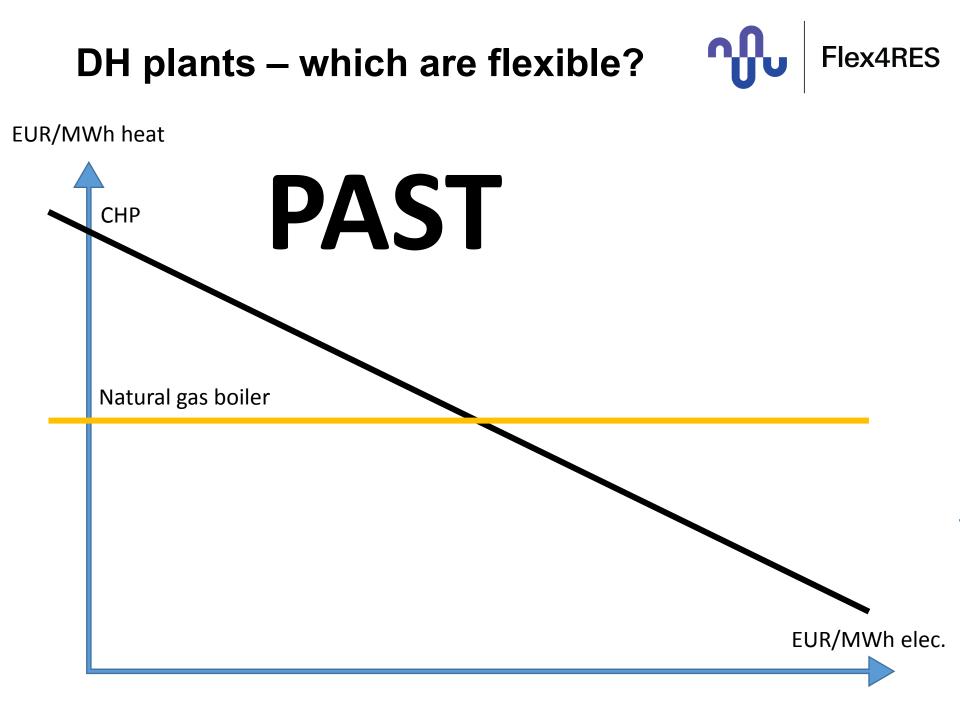
THEORY: How can DE integrate renewables/operate on market?


DE does not fit in traditional flexibility definition

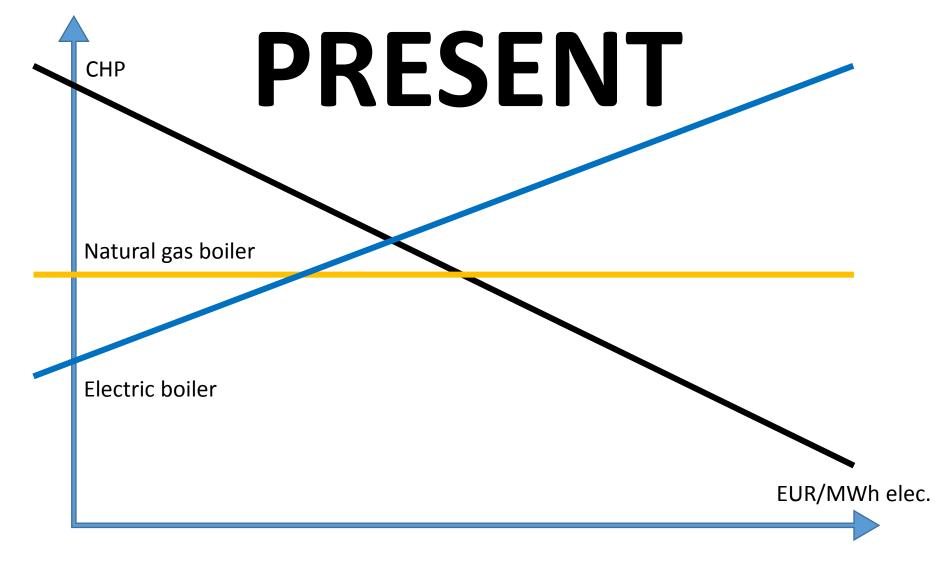

Flex4RES

As defined in IEA. The power of transformation. Paris: IEA; 2014. doi:10.1007/BF01532548.

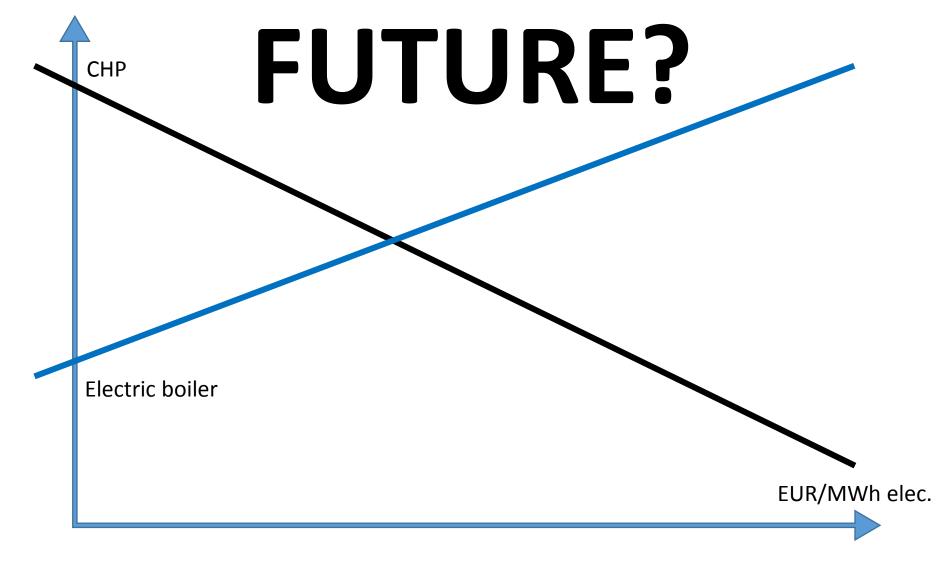
EXTRA: Why capacity tariffs can U Flex4RES be bad for flexibility

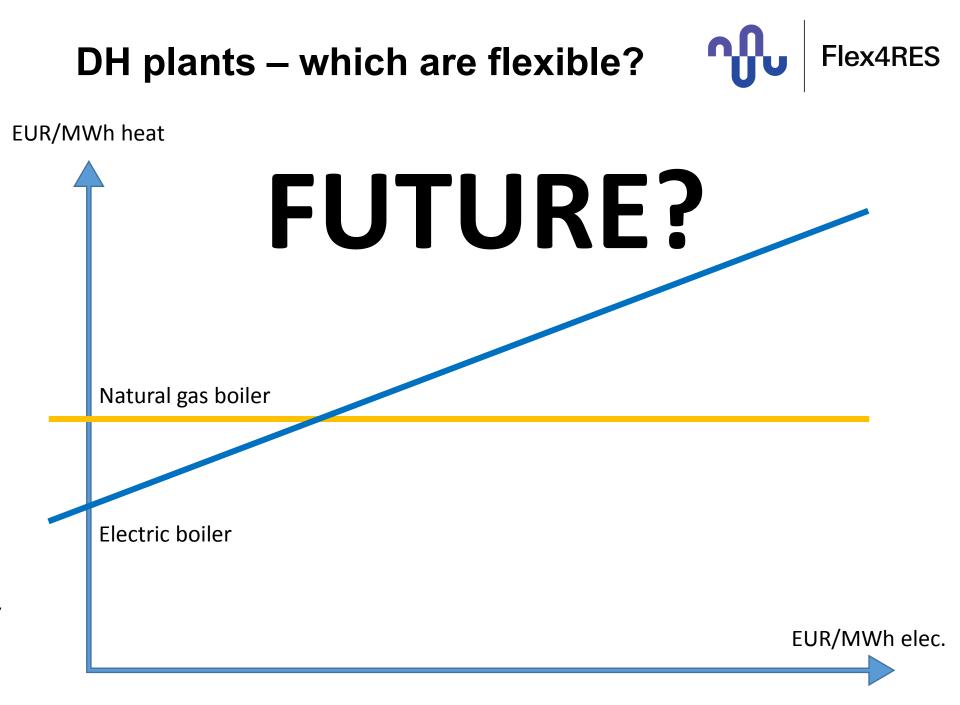

Results: CHP + electric boiler depends on subsidies

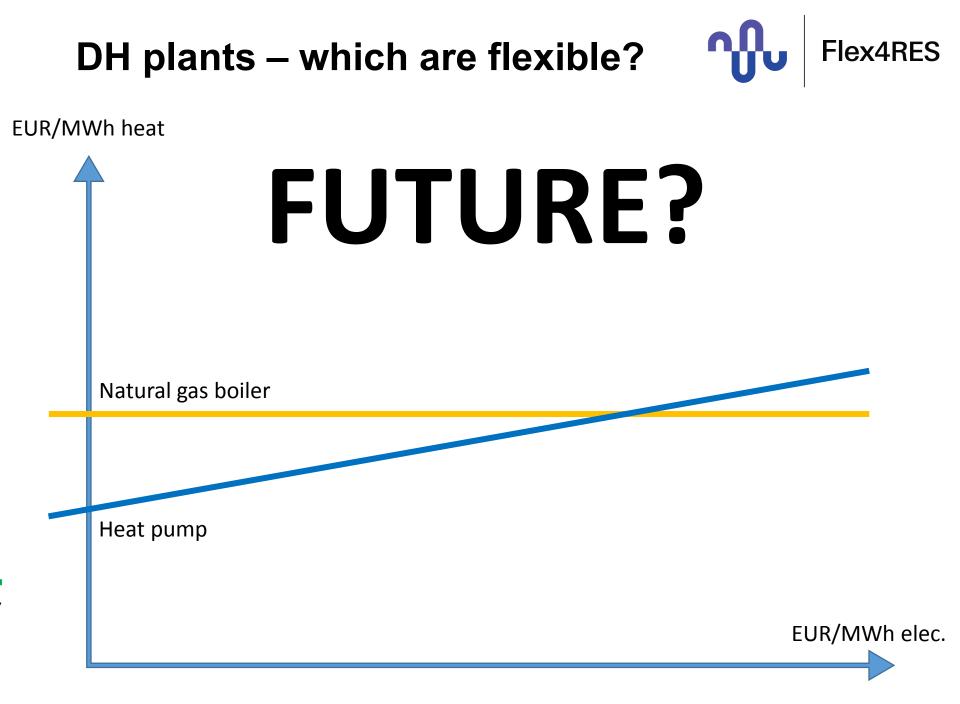
Results: Danish framework hampers investment in flexibility



Technology setup	Grid tariff type	Storage	DK
Wood chip CHP + wood boiler			-97
Wood chip CHP + wood boiler			-108
Wood chip CHP + EB	Capacity charge		-91
Wood chip CHP + EB	Capacity charge		-128
Wood chip CHP + EB			-91
Wood chip CHP + FB	Energy charge		-128
Wood chip boiler			-73
Wood chip boiler			-86
Wood chip boiler + EB			-99
Wood chip boiler + EB	Capacity charge		-104
Wood chip boiler + EB			-99
Wood chip boiler + EB	Energy charge)	-104

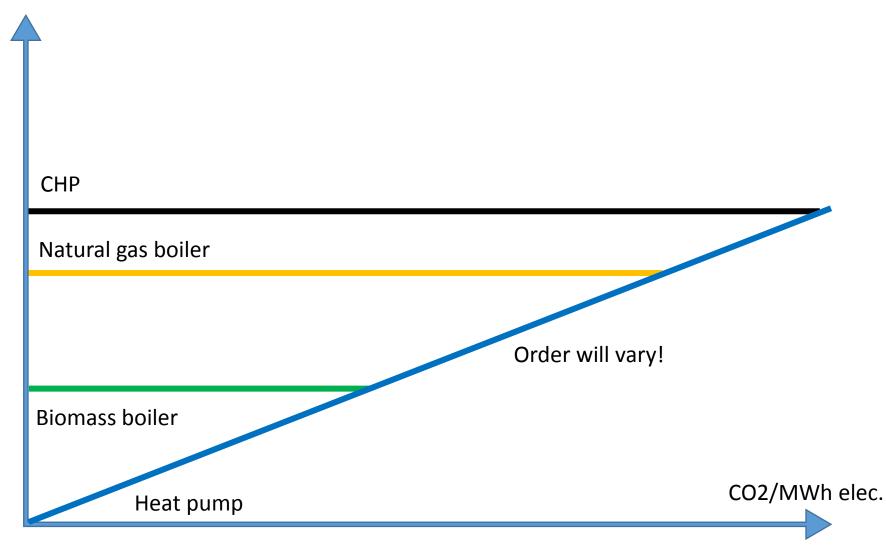



EUR/MWh heat

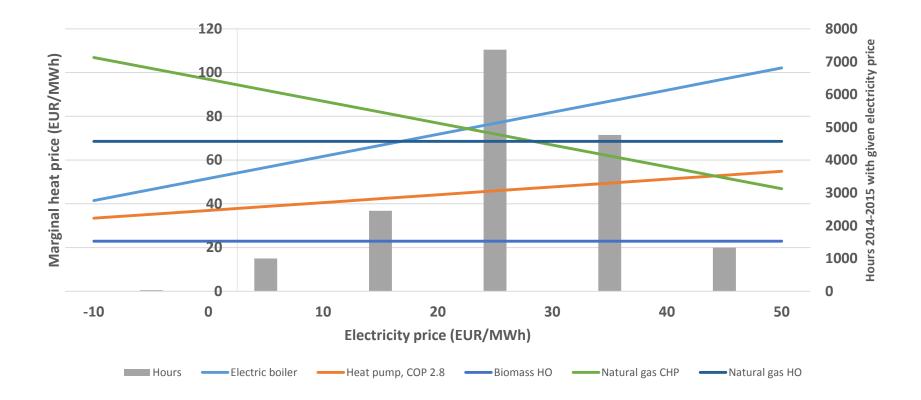


EUR/MWh heat

EUR/MWh heat


Biomass boiler

EUR/MWh elec.


Environmental dispatch

CO2/MWh heat

THEORY: What is a flexible DE V Flex4RES **system?**

