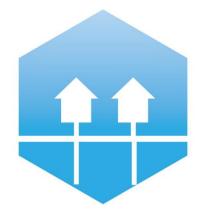
4<sup>th</sup> International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018

### Towards Global Spatial Modelling for Identifying Opportunities for Local Smart Energy Systems

Bernd Möller<sup>ab</sup> Tabitha Karanja<sup>a</sup> Mominul Hasan<sup>a</sup> Eva Wiechers<sup>a</sup> Mary Asare-Addo<sup>a</sup>


 a: Centre for Sustainable Energy Systems, Europa-Universität Flensburg, Germany
 b: Department of Development and Planning, Aalborg University, Denmark



DENMARK

Europa-Universität Flensburg


4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018





4th Generation District Heating Technologies and Systems

# World Population and Energy



1.3 B people without electricity access, mostly in sub-Saharan Africa
2.7 B people who use traditional fuels for cooking
0.7 B people live in extreme poverty now, even fewer in the future
+ 2 B more people in Africa and Asia until 2050

4-6 B people may be elevated from low to medium-income levels2.5 B new city dwellers until 2050

~ 6 B people live in areas with plenty of solar energy

Map data: LandScan 2016, ORNL. Bright EA, Rose AN, Urban ML, McKee JJ, 2017

# Major Global Energy Challenges



### Transformation towards smart energy systems

Energy efficiency and renewable energy in all sectors and on all levels: demand, infrastructures, supply

### **Global Sustainable Development Goal #7**

Universal access to modern and affordable energy supply in rural and urban areas worldwide

### Accelerated Urbanisation and unplanned growth

Urbanisation may comprise the greatest challenge and the biggest opportunity for smart energy systems



### **Research Drivers**



Current energy modelling heavily relies on available statistics, but these have two major problems:

Problem 1: They are historic, empirical and of limited value for assessing future energy systems and disruptive change

Problem 2: They usually contain national, aggregated data, which is of little value to assess local energy systems

Common solution: spatially disaggregate energy data to allow for modelling of local demands, infrastructures and supplies!



### **Research Agenda**



Define localities of local energy systems worldwide *Prospective supply areas for heating, cooling, electricity* 

Model demand (current and unmet)

Suppressed demand (energy poverty) is one of the major barriers in achieving SDG#7

Map current and potential infrastructures

Access to technologies such as district heating, minigrids etc.

Quantify renewable energy sources

Spatially explicit cost-supply relationships of wind, solar etc.



### Localities of Energy Systems Worldwide



- Each energy system is connected to a location, by means of demand, energy infrastructures and renewable energy sources
- Contrary to fossil energy systems, Smart Energy Systems will be much more geographically defined
- In modelling, the challenge is to allow for a sufficient reduction of complexity when mapping energy systems
- The result is a geographical delineation of areas, which form the basis for the quantification and localisation of smart energy systems.





### From "Peta" to "PEEA"



### **Pan-European Thermal Atlas**

- Heating and Cooling demands
- Delineate Prospective Supply Districts as local heat markets
- Recommended district heating based on resourceeconomic information
- Suggest local supply based on available heat resources

### **Planet Earth Energy Atlas\***

- Current and suppressed energy demands
- Model required energy infrastructures by supply areas
- Provide access to supply infrastructure on the basis of development costs
- Suggest local supply based on local renewable energy



#### Current and Unmet Energy Demands In Africa, less than 20% of electricity demand is met! Technologies and System Liberia\* post-Power Africa Current consumption generation goal Current unmet demand Additional demand by 2030 Ghana Modern access modeled on **Tunisia levels:** 1260kWh/person/yr Kenya Tanzania Ethiopia Nigeria 20 50 10 30 40 60 \*No Power Africa MW goals have been announced for Liberia at this point GW Sources: WB WDI, US EIA, IEA, UN population estimates

#### Source: Todd Moss, thebreakthrough.org (2014)



4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

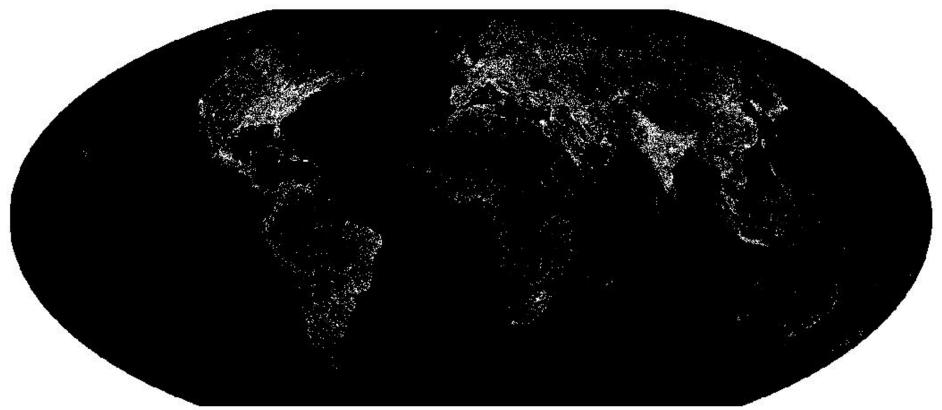
### ESMAPs Multi-Tier Framework as a Basis for Assessing Suppressed Demand

Quantifiable change if households move one tier level up.

| Current tier (MTF)                         | Tier 0  | Tier 1   | Tier 2   | Tier 3      | Tier 4        | Tier 5  |
|--------------------------------------------|---------|----------|----------|-------------|---------------|---------|
| Current<br>consumption<br>[kWh/HH/a]       | 0 - 4.5 | 4.5 – 73 | 73 – 365 | 365 – 1,250 | 1,250 - 3,000 | > 3,000 |
|                                            |         |          |          |             |               |         |
| New allocated tier<br>(MTF)                |         | Tier 1   | Tier 2   | Tier 3      | Tier 4        | Tier 5  |
| New allocated<br>consumption<br>[kWh/HH/a] |         | 34       | 146      | 593         | 875           | 3500    |

Bhatia, Mikul; Angelou, Niki. 2015. Beyond Connections : Energy Access Redefined. ESMAP Technical Report;008/15. World Bank, Washington, DC. © World Bank.




## Effects on Raising Tier Levels; Kenya

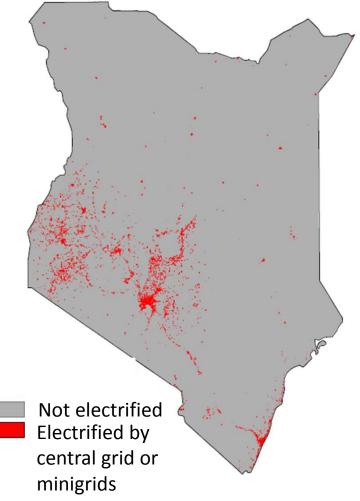
Modelled electricity demand [kWh/km<sup>2</sup>]



# Nightlights for Modelling Energy Access and Intensity






Data source: Earth Observation Group, NOAA National Centers for Environmental Information (NCEI), 2015



4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

### Modelling Required Electricity Infrastructures (Grid extension, minigrids)





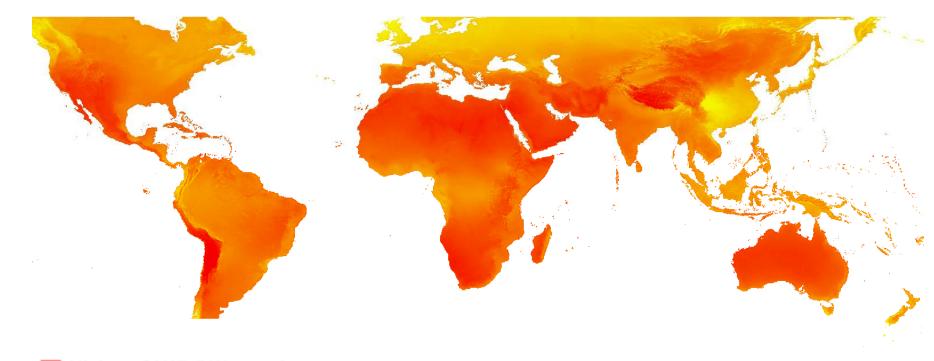
Europa-Universität Elensburg

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

# Local Energy System Properties



Demands, current and potential

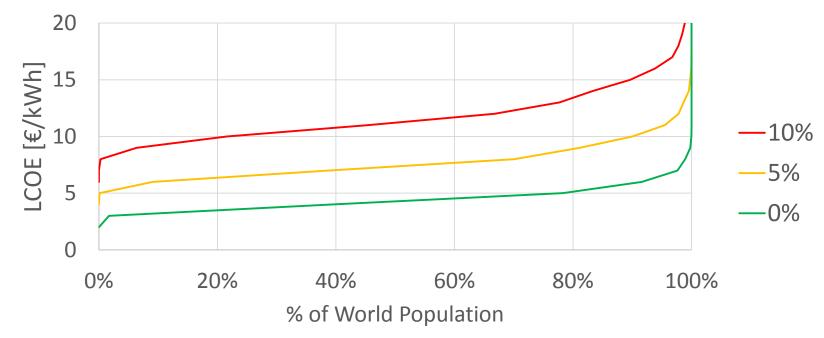

### Minimum density criterion

Delineation of supply districts Spatial statistics of demand and supply



4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 - #SES4DH2018

### **RE Sources by Location and Cost**




High : > 6 kWh/kWp per day

Low : < 1 kWh/kWp per day



# Utility-Scale PV, LCOE by Population and Access to Capital (WACC)



Assuming investments of 1.5 €/Wp, O&M of 1% of investment p.a., excluding grid, balance of system etc. Data sources: LandScan gridded World population 2016, World Bank Global Solar Atlas.

# Model Outputs

- For a given country or region, PEEA will provide a multi-dimensional energy overview:
  - Current demands by access status, geography
  - Unmet demands and development perspectives
  - Market potentials for local energy systems: grid access, minigrids, district energy etc.
  - Opportunities to use renewable energy
  - Linkages to other sectors (transport, agriculture) may be provided.

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 - #SES4DH2018

### Conclusions



A global Energy Atlas at 1km<sup>2</sup> resolution is feasible.

A magnitude of spatial energy-relevant data exists.

Suppressed energy demands, access to infrastructure and to renewable energy sources can be mapped.

A coherent planning system emerges, which may help addressing current research needs.

More work needs to be done to hardwire the model.

