

The Danish triple tariff and the radically changing role of CHPs through the transition to a renewable energy system

Anders N. Andersen, EMD International A/S Poul Alberg Østergaard, Aalborg University

The Danish triple tariff

Working days	Low load	High load	Peak load
Winter (October-March)	21.00-06.00	06.00 - 08.00	08.00 - 12.00
	All holidays	12.00 - 17.00	17.00 - 19.00
	All weekends	19.00 - 21.00	
Summer (April-September)	21.00-06.00	06.00 - 08.00	08.00 - 12.00
	All holidays	12.00 - 21.00	
	All weekends		

The Danish triple tariff

- Payment for reducing fossil fuel use at power plants
- Payment for reducing variable operating costs at power plants
- Payment for reducing fixed operating costs at power plants
- Payment for reducing the need for new power plants
- Payment for reducing the need for transmission grid expansion
- Payment for reducing the need for distribution grid expansion
- Payment for reducing grid loss in transmission grids
- Payment for reducing grid loss in distribution grids

Detailed legislation governing the Danish triple tarif

Heating tems

Power plant net electrical efficiency	η	58%	
Power plant, Variable operation and maintenance cost	V _{Plant}	2.54	EUR/MWh _e
Power plant, Yearly fixed operation and maintenance cost	YF _{Plant}	13,597	EUR/MW _e
Real discount rate	r	3%	
Investment cost in power plant	I _{plant}	0.905	MEUR/MW _e
Life time of power plant	L _{plant}	25	years
Yearly capital cost factor of investment in power plant	YC _{plant}	0.05743	
Investment cost in the 150 kV-grid	I ₁₅₀	0.286	MEUR/MW _e
Investment cost in the 60 kV-grid	I ₆₀	0.095	MEUR/MW _e
Investment cost in the 10 kV-grid	I ₁₀	0.054	MEUR/MW _e
Investment cost in the 0.4 kV-grid	I _{0.4}	0.054	MEUR/MW _e
Life time of electrical grids	Lgrid	25	years
Yearly capital cost factor of investment in electrical grids	YCgrid	0.05743	

Table 2: The power plant and grid data not depending on the tariff periods, used for calculating the triple tariff.

Detailed legislation governing the Danish triple tarif

	Low tariff	High tariff	Peak tariff			
Hours per year	Hi	5010	2498	1252		
Full load hours of electricity demand	FLHi	2475	1728	1097		
Distribution keys for investment and yearly fixed costs	Di	0	0.5	0.5		
Net Loss percentage in the 150 + 400 kV-grid	NL150 _i	2.8%	4.2%	4.7%		
Net Loss percentage in the 60 kV-grid	NL60 _i	2.1%	3.2%	3.6%		
Net Loss percentage in 10 kV-grid	NL10 _i	1.4%	2.7%	3.5%		
Net Loss percentage in 0.4 kV-grid	NLO.4 _i	2.8%	5.1%	6.8%		
Table 3: The power plant and grid data depending on the tariff periods, used for calculating the triple tariff.						

Detailed legislation governing the Danish triple tarif

$$SC_{i} = \frac{GP*3.6}{\eta} + V_{Plant} + \frac{(YC_{plant}*I_{plant}+YF_{Plant})*D_{i}}{FLH_{i}}$$

$$YC = \frac{r}{1 - (1 + r)^{-L}}$$

$$P@60_i = SC_i / (1 - NL150_i) + YC_{grid} * I_{150} * D_i / FLH_i$$

$$P@10_i = P@60_i / (1 - NL60_i) + YC_{grid} * I_{60} * D_i / FLH_i$$

$$P@0.4_i = P@10_i / (1 - NL10_i) + YC_{grid} * I_{10} * D_i / FLH_i$$

To be paid for distributed electricity production at the triple tariff October to December 2015						
EUR/MWh	Low load	High load	Peak load			
Saved fuel costs at power plants	21,85	21,85	21,85			
Saved variable operating costs at power plants	2,54	2,54	2,54			
Saved fixed operating costs at power plants	0,00	3,92	6,30			
Saved investment costs at power plants	0,00	20,44	32,82			
Total saved at power plants	24,39	48,76	63,51			
Saved grid loss at 150 + 400 kV	0,70	2,14	3,13			
Saved grid expansion, 150 kV	0,00	6,46	10,36			
Total saved an 150/60 kV-transformer	25,10	57,35	77,01			
Saved grid loss at 60 kV	0,54	1,90	2,88			
Saved grid expansion, 60 kV	0,00	2,15	3,46			
To be paid for electricity delivered at 60/10 kV-transformer	25,63	61,40	83,34			
Saved grid loss at 10 kV	0,36	1,70	3,02			
Saved grid expansion, 10 kV	0,00	1,22	1,95			
To be paid for electricity delivered to the 10 kV-grid	26,00	64,32	88,31			
Saved grid loss at 0.4 kV	0,75	3,46	6,44			
Saved grid expansion, 0.4 kV	0,00	1,22	1,95			
To be paid for electricity delivered to the low voltage-grid	26,75	68,99	96,71			

The electrical infrastructure in Denmark in 1985. Red circles indicate central power plants, yellow circles DHCP CHP and secondary producers above 500 kW

The electrical infrastructure in Denmark in 2015. Red circles indicate central power plants, yellow circles DHCP CHP and secondary producers above 500 kW

ADH the Generation District Heating technologies and Systems INVEST

Electrical capacity in Denmark

The radically changing role of CHPs

- Phase 1: DHCP CHP displaces fossil fuelled power plants
- Phase 2: DHCP CHP participates in the integration of fluctuating RES
- Phase 3: DHCP CHP primarily delivers needed electrical capacity in few hours

T

- CHP at district energy plants —— Central power plants producing in condensing mode

NOTICE:

There is no CHP in a 100% renewable energy system

CHP is a transitional technology

www.4dh.eu

www.reinvestproject.eu

www.heatroadmap.eu

The Danish TSO, Energinet.dk's plans for 100% renewable energy shows that the present CHP production in Denmark of 90 PJ-heat is in 2035 down to 40 PJ-heat and in 2050 down to 5 PJ-heat.

AALBORG UNIVERSITY DENMARK 4th Inte

Energinet: System Perspective 2035 - Main Report_English

AALBORG UNIVERSITY

DENMARK

But prices are going up

ЬĿ

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

AALBORG UNIVERSITY DENMARK

A method for assessing support schemes promoting flexibility at District Energy plan

This method was tested on typical District Energy plants

CHPs						
Electrical efficiency	44.0%					
Heat efficiency	48.9%					
Total efficiency	92.9%					
Fixed operation costs	10000	EUR/MW _e /year				
Variable operation costs	5.40	EUR/MWh _e				
Investment in CHPs	650000	EUR/MW _e				
Investment in installation	350000	EUR/MW _e				
Thermal storage						
Investment in thermal storage	200	EUR/m ³				
Existing boilers						
Heat efficiency	97.1%					
Variable operation costs	1.10	EUR/MWh _{heat}				
able 2: Technical and economic CHP, TES and existing boilers characteristics						

Finding optimal Net Present Value for each support scheme in

a matrix of CHP capacity and Thermal Energy Storage

Total											tion District Hea ogies and Syster
TOLAI		f 31									
CHP ca-		TES [m ³]									
pacity											
[MW _e]											
	0	60	120	180	240	300	360	420	480	540	
3.00	2.515	2.585	2.627	2.651	2.662	2.665	2.663	2.659	2.654	2.648	
3.20	2.563	2.642	2.692	2.722	2.738	2.744	2.744	2.742	2.739	2.735	
3.40	2.598	2.686	2.742	2.777	2.797	2.805	2.807	2.806	2.803	2.800	
3.60	2.623	2.715	2.775	2.815	2.838	2.849	2.853	2.853	2.851	2.848	
3.80	2.632	2.727	2.794	2.838	2.865	2.878	2.884	2.885	2.884	2.882	
4.00	2.627	2.727	2.797	2.846	2.878	2.895	2.902	2.905	2.905	2.903	
4.20	2.605	2.713	2.790	2.845	2.883	2.903	2.913	2.917	2.918	2.917	
4.40	2.570	2.687	2.772	2.834	2.876	2.902	2.915	2.922	2.924	2.924	
4.60	2.522	2.648	2.742	2.809	2.857	2.887	2.904	2.913	2.916	2.917	
4.80	2.461	2.596	2.698	2.772	2.823	2.857	2.877	2.888	2.893	2.896	

Table 1: An example of the path to an optimal solution, shown in a section of a decision matrix of Net Present Values in Mio. EUR of investment in CHP and TES at a DE plant.

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018

n District Heating

In this presentation I have used this method to compare the two support schemes:

The Danish triple tariff

&

Premium Scheme

AALBORG UNIVERSITY

DENMARK

Installed CHP capacity as function of the NPV of the paid support in 20 years for both the triple tariff and for different levels of the Premium scheme.

ſſŤ

AALBORG UNIVERSITY

DENMARK

Installed CHP capacity as function of the NPV of the paid support in 20 years for both the triple tariff and for different levels of the Premium scheme.

AALBORG UNIVERSITY

DENMARK

1							
			Net Present Value of paid	Yearly electric-			
	CHP-capacity [MW]	Thermal store size	plant in 20 years	ity production			
Triple tariff	7.00	3 000	12.917	34 440			
Premium scheme	5.31	822	12.917	31 066			
Table 6: Comparing installed capacities and yearly electricity productions at the same NPV of paid support to the plant in 2 years on the Triple tariff and the Premium scheme.							

December to 26th December.

DENMARK

Figure 8: Operation on the Premium scheme of the DE plant equipped with the CHP and TES capacity given in Table 6 in 7 days from 20th December to 26th December.

AALBORG UNIVERSITY

DENMARK

Monthly capacity payment replaced the triple tariff

An example of that market based operation includes more electricity markets than just Day-ahead market

www.emd.dk/energy-system-consultancy/online-presentations

Skagen Varmeværk, onsdag, 8. aug 2018

The 5 European electricity markets that are able to integrate intermittent production from photo voltaic and wind energy

http://www.emd.dk/el/

