

Utilizing waste construction and industrial materials in an underground HGHE system

Yasameen.alameen@ntu.ac.uk

3rd international conference onSMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATINGCopenhagen, 12-13 September 2017www.4dh.euwww.reinvestproject.euwww.heatroadmap.eu

Contents

- Motivation
- Horizontal ground heat exchanger
- Aim and methodolgy
- Materials and properties
- Experimental and numerical work
- Results and conclusions

Motivation

'MEETING THE FUTURE NEEDS OF ENERGY CONSUMPTION'

EU energy consumption

Sustainable energy sources:

- Solar
- Wind
- Geothermal
- Biomass
- Waste Heat
- Others...

Underground Heat Storage Horizontal ground heat exchanger (HGHE)

UNDERGROUND

Developed experimental HGHEs (loop)

- A small scale experimental solar assisted HGHEs was designed and tested to meet a test room heating load of 1kW
- The inlet mass flowrate of the HTF was the most significant parameter affecting heat exchange rates
- Heat exchange rates were calculated to be between 14W/m and 83W/m depending on the flowrate
- A comparison of seven soils backfills were studied
- The sand filled system operated with a better efficiency

Published work

	Contents lists available at ScienceDirect						
2-22-22	Energy journal homepage: www.elsevier.com						
ELSEVIER							
Thermal perfo Yasameen Al-Amee School of Architecture Device	rmance of a solar assisted h en*, Anton Ianakiev, Robert Evans	torizontal ground heat exchanger					
		0-					
ARTICLE INFO	ABSTRACT						
Article history: Received 1 November 2016 Received in revised form 16 A Accepted 20 August 2017 Available online xxx	This paper presents an ey (HCHEs) operating as a d mediums, with sand and nected to a 15 m ² test roor simulating goar input, we was circulated through a c	This paper presents an experimental study of a solar assisted horizontal ground hest exchanger system (HGHEs) operating as a duply heat storage unit limitally, serveral isally wave assessed as samible heat storage maximum, with and and gravel selected as the most appropriate. These, a FGHES was designed and con- nected to a 15 m ² test room with a heating load of 1 kNI at Normingham Trent University. Heating coblex, simulating solar input, new used to heat the solar in the HGHEs to 70 °C; then a heat transfer fuld (HT)- was circulated forugals closed loop date exchanges to exact the stored heat. The parameters of sola back					
Keymords: Energy storage Horizontal ground heat exchan Soils Building Space heating	fill and HTF mass flow re and 0.6 L minu were tested were the state of the state of the state heart sychneys reter. The s a longer duration achieven efficiency of 58%. Insula- tuations in the HOHELS. O duced from the system we some household hearing a	fill and HTF mass forvate wase investigated in the HGHEs. Several output flowrases ranging between 0.1 and 0.0 Limit uses tested, producing dicharge direct synthygic between etc. Who can to 5 web ways. The HTF mass flowrate was found to be the most significant parameter, affecting the HGHEs thermal capacity and hese exchange rates. The stand filled HGHE produced approximately. 10% more how water (7 > 3.5 °C) leads a longed catronic achieving an efficiency of 75% compared to the gravel filled HGHE with a lower system efficiency of 55% insulating the HGHE system was find to reduce heat losses and swoid temperature flow- turations in the HGHEs. Overall, the explicit blow trategrave flows and duration pro- duced from the system was in line with low temperature district heating guidelines and can be applied to some household heating applications incorporating four flows and low transeruture.					
		0 2017.					
1. Introduction 1.1. Background		performance was studied by Lee et al. [8]. In this study, the focus was a solar assisted HGHEs with operating temperatures ranging between 35 and 70 °C [9]. HGHEs consists of heat exchange pipes, the					
Over recent years, to source it ownade anergy able interest bocause i uniding heating purpose able interest bocause i to and have been develope and commercial building exchange medium and the state materials and genued [4]. (Liams man heat more efficiently, changer to build, and 4) (HGHEs) arrangement, GHEs installed for h been extensively studies of (HGHEs) arrangement,	here has been a shift from conventional re- efficient renewable sources of energy for source of energy (r) of consider leads to duminution of fossil fuels consump and for heating cooling purposes in residential ps. The main heat collection storage systems pround materials. The ground is a stible heat is essentially unlimited and always available is super systems (CHE) have gained recogni- ance even in College (INE) and always available leavy couplication of thermal energy from the leavy couplication of the and energy from the deliver a higher solar fraction with the same one even in colder climates [3,5]. ance even in colder climates [3,5]. ance even in colder climates [3,5]. antig and cooling purposes in buildings have d by various suthors [6,7]. Closed ground- and a comparison of HGHEs and VGHEs and a comparison of HGHEs and VGHEs	and the second secon					
* Corresponding author.	·····	instaned capacity, according to 2005 data, accounting for 54.4% and 32.0% of the worldwide capacity and use.					

* Corresponding author. Email address: Yasameen alameen@ntu ac.uk (Y. Al-Ameen)

Title: Thermal performance of a solar assisted horizontal ground heat exchanger

ENERGY Journal

Authors: Yasameen Al-Ameen, Anton Ianakiev, Robert Evans

Proposed improvements to HGHE system

Improve the efficiency and thermal performance of the system

- This can be improved by:
 - Improving the soil's thermal properties
 - Increasing the volume of soil
 - Ground source heat pump (GSHP)
 - Improving the heat transfer pipe
 - Thermal conductivity
 - Thickness
 - Configuration
 - Pipe spacing

Use waste materials with better thermal properties

Recycling Waste Materials

Wastes from construction materials and products industry, kt (excluding quarry wastes)

Wood products

Aim and objectives

'TO INVESTIGATE THE ENHANCEMENT OF HGHEs USING RECYCLED WASTE MATERIALS'

- Identify waste materials to be used
- Establish material properties by experimental procedures
- Develop a numerical model simulating HGHEs

to determine temperature distributions within materials

- Improve thermal performance of HGHEs
- Demonstrate novel storage system

Experimental Set-up

Backfill material selection

Criteria: waste, density, temperature, environmentally friendly

Material thermal testing

Thermal testing in Environmental Chamber (EC)

Testing cycle regime:

- Fill container with material (≈ 20 kg)
- Embed thermocouples in containers
- Attach thermocouples to data logger
- Put container in EC and heat to 70°C
- Take container out of EC and cool to 20°C
- Assess materials behaviour

Results - Thermal testing (Materials)

Results - Thermal testing (Materials)

Results - Thermal testing (Additions)

Results - Thermal testing (Gradations)

Numerical Model Development

- 3D CFD simulations produced to model HGHE
- Modelled in ANSYS Fluent 17.2 workbench
- Transient conductive heat transfer

 $\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) = \rho c \frac{\partial T}{\partial t}$

Two models created for: (A) Charging and (B) Discharging modes

Numerical model results

Comparison and Validation of results (Heating HGHEs; Inlet 343K; Backfill 298K)

<u>Material</u>	Thermodynamic results range $Q = mC_{ m p} \Delta { m T}$ (kJ/kgK)	Av. Surface temperature at HGHE centre (K)	Av. Surface temperature at 0.04m (K)	Av. Surface temperature at 0.06m (K)	Temperature difference between centre and top (K)
LB SAND (ALSO CON, IP) EXPERIMENTAL	10000 – 16000	329	312	306	23
LB SAND (ALSO CON, IP) NUMERICAL	"	327	309	302	25

- Results showed that metallic materials including CS, AO, MS, IFO, IFN had better heat storage performance, and up to 70% improvement
- The thermal capacity of the HGHE system can be doubled by using CS,AO,MS,IFO,IFN materials instead of sand alone
- IP, CON, TBR, BAC, BAF had similar performance to sand
- TBW and GR underperformed
- Gradation is a significant parameter in backfill selection, where medium sized particle sizes (1.18-2.36mm) performed better by 92% compared to course and fine gradations
- The higher the percentage addition (100%) of the material blended with the sand, the better the heat storage by 77%
- The selected materials are cheap and have a high thermal capacity
- Numerical and experimental results confirmed and validated

Yasameen Al-Ameen yasameen.alameen@ntu.ac.uk

