

Simulation of bidirectional heat transfer

stations in district heating grids

Dr. Markus Rabensteiner

Reininghausstraße 13A,

A-8020 Graz

Austria

+43 664 88251830

markus.rabensteiner@4wardenergy.at

/erantwortung für Energie und Umwe

Key data of the research project

Funding program

- Energieforschung 2015 2. call
- Funding sponsor: Climate and Energy Fund Austria
- Settlement Agent: Austrian Research Promotion Agency

Project duration

01.04.2016 until 31.03.2018

Contents

- Investigation of a bidirectional heat transfer station
- Innovative control strategies for the integration of renewable heat sources

4ward Ener

Increasing the efficiency of heating systems

Introduction

Plant

Simulation

Results

Summary

Initial situation in Austria

Source: Schmidt. R.-R., 2015. Der F&E-Fahrplan – Fernwärme & Fernkälte in Österreich.

4ward Energy

Initial situation in Austria

4ward Energy

slide 4

Source: FGW, 2015. Erdgas und Fernwärme in Österreich – Zahlenspiegel 2015

11.09.2017

Challenges

Introduction
Plant
Simulation
Results
Summarv

- Decreasing specific heat demand in existing and new buildings → low heat density in a region
- Decentralized integration of (low temperature) heat sources of prosumers
- More flexible structures to enable open and modular heating systems
- Ensuring an all-season heat supply (various types of consumption) through a mix of centralized and decentralized heat sources

Legal requirements

Introduction
Plant
Simulation
Results
Summary

- Equal rights and fairness for all customers → Who can feed in when and how much and at what conditions?
 - Site and development safety:
 - Connection and feed-in obligations on the part of the municipalities
 - Financial penalties for large potential waste heat suppliers
 - Normative adaptation and simplification of domestic water supply (legionella problem)
 - Change of calibration and standardization of heat meters

4ward Ene

Use cases

Introduction
Plant
Simulation
Results
Summary

- Solar thermal energy supply on the secondary side
- Waste heat integration from medium (commercial) refrigeration plants on the secondary side
 - Larger heat pump applications on the primary side (return cooling)

Integration options

Introduction
Plant
Simulation
Results
Summary

- Flow from the return to the forerun
 - high pump performance (small volume flows / high differential pressures)
- Return rise
 - Pressure reducing valve in return or heat exchanger pump
 - Decreasing efficiency of the primary heat source (condensation boiler)
- Forerun rise
 - Pressure reducing valve in forerun or heat exchanger pump

slide 8

flow

Solarthermics

Introduction
Plant
Simulation
Results

Summar

90% of all collectors are flat plate collectors

$$T \uparrow \rightarrow \eta \downarrow \downarrow$$

- Vacuum tube collectors are advantageous at higher temperatures. However, these are almost not be used because of the high prices
- Operation
 - High-flow (return rise)
 - Low-flow (forerun rise)
 - Matched-flow (Flow from the return to the forerun

slide 9

Chiller + heat pump

- Introduction Plant Simulation Results
 - Summary

- Year-round use
- Waste heat from the freezing and standard cooling cells (e.g. supermarket)
- Max. waste heat temperature of 30 to 35° C
- Waste heat potential of a supermarket: ~250 MWh/a

4ward Energ

Hydraulic schema

11.09.2017

Heat absorption from the grid

Flow from the return to the forerun

11.09.2017

Return rise

Forerun rise

11.09.2017

Objectives of the simulation

Introduction Plant Simulation **Results**

Summary

While in a laboratory test, the control of a prosumer is examined, a numerical model is used to examine the effects of several prosumer on the entire grid.

Simulation of the secondary side

4ward Energy

Simulation of a single prosumer

Introduction	
Plant	
Simulation	
Results	
Summary	

- The forerun and return temperature of the district heating grid, at the point where the prosumer is located, is feed into the computer
- The influence of other prosumers is not considered

slide 18

Simulation of a single prosumer

Introduction	The f	orerun and	retu	rn temp	erature of th	e dis	strict
Plant	heatii	ng grid, at	the	point wl	here the pros	sume	er is
Simulation	locate	ed, is feed i	nto tl	he comp	outer		
Results	The	influence	of	other	prosumers	is	not
Summary	consi	dered			•		

4ward Energy

Simulation of a single prosumer

Simulation of a line of prosumers

Introduction	
Plant	
Simulation	
Results	

Summary

- Simulation of a line of prosumers in a reference district heating grid
- Standardized design of a prosumer
- Arbitrary choice of locality

slide 21

Simulation of a line of prosumers

Introduction	
Plant	
Simulation	
Results	
Summony	

Juiinar

- Simulation of a line of prosumers in a reference district heating grid
- Standardized design of a prosumer
- Arbitrary choice of locality

4ward Enerc

slide 22

Summary

Introduction
Plant
Simulation
Results
Summary

- The objective of the research project MULTItransfer is the exploration of a bidirectional heat transfer station for district heating grids
- A simulation model depicts the secondary side
- At present, the control can only be effected by the storage temperature
- A model for investigation the thermo-hydraulic behaviour is planned
- A laboratory test will be carried out in the coming weeks → Validation of the simulation model

