3rd International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 12-13 September 2017

Heat pumps in the UK's district heating: individual, district level, both or neither?

Zhikun Wang PhD student UCL Energy Institute University College London

DENMARK

4th Generation District Heating Technologies and Systems

Outline

- UK's heat demand and market
- Options to decarbonise the UK's heating sector
 - Repurposing the gas grid
 - District heating networks
 - Individual heating technologies
- Heat pumps in district heating

AALBORG UNIVERSITY DENMARK

Today 占古 45% of final energy demand is consumed to supply heat 78% houses are heated by natural gas 4th Generation District Heating Technologies and Systems Heating (non electrict), Natural gas 890 TWh, 78% 38% Transport, Electricity 846 TWh, 7% 36% Oil Heating 8% Electrict (electrict), power, 438 155TWh, TWh, 19% 7% Bioenergy and Solid fuel waste 5% 2% 3rd International Conference on Smart Energy Systems and **AALBORG UNIVERSITY** DENMARK

Decarbonising the heating sector

DENMARK

4 4th Generation District Heating Technologies and Systems

Renewable Heat Incentives	ASHP	GSHP	Biomass	Solar thermal
Tariffs (p/kWh)	7.63	19.64	4.28	20.06

AALBORG UNIVERSITY DENMARK 3rd International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 27-28 September 2016 (Ofgem, 2017)

Current costs comparison

DENMARK 4th Generation

4th Generation District Heating, Copenhagen, 27-28 September 2016

DENMARK

What are the economic and environmental advantages of deploying heat pumps at different scales?

Technologies and Systems

AALBORG UNIVERSITY

DENMARK

Individual heat pump vs. heat pumps in DH

DENMARK

Same amounts of heat pumps and houses, no DH

Individual heat pump vs. heat pumps in DH

AALBORG UNIVERSITY DENMARK

Thank you!

zhikun.wang.10@ucl.ac.uk

AALBORG UNIVERSITY DENMARK

References

- CCC. 2016. Next steps for UK heat policy. London, UK: the Committee on Climate Change 401
- DECC. 2014. United Kingdom housing energy fact file. UK: the Department of Energy & Climate^{***} Change (Department for Business, Energy & Industrial Strategy).
- ERP. 2016. Heating Buildings: Reducing energy demand and greenhouse gas emissions. London, UK: the Energy Research Partnership.
- Hannon, M.J., 2015. Raising the temperature of the UK heat pump market: Learning lessons from Finland. *Energy Policy*, *85*, pp.369-375.
- Love, J., Smith, A.Z., Watson, S., Oikonomou, E., Summerfield, A., Gleeson, C., Biddulph, P., Chiu, L.F., Wingfield, J., Martin, C. and Stone, A., 2017. The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial. *Applied Energy*, *204*, pp.332-342.
- Northern Gas Networks. 2016. The H21 Leeds City gate project.
- Ofgem, 2017. Domestic Renewable Heat Incentive. Available: <u>https://www.ofgem.gov.uk/environmental-programmes/domestic-rhi</u>

DENMARK

DENMARK

After Diversity Maximum Demand per heat pump

AALBORG UNIVERSITY DENMARK