

Methods of reducing the district heating return temperature from the local substations

- Sensible regulation and smart control

Xiaochen Yang, Postdoc Department of Civil Engineering, DTU Contact: xiay@byg.dtu.dk

DTU

Background

- 1. Why LTDH?
- 2. Why low return temperature?
- 3. Difficulties
 - Thermal comfort
 - Dynamic heating load
 - Deviation between the design and practical situation

Reasons & substation layout

Typical substation layout
HEX for DHW preparation

Reasons & substation layout

- Storage tank for DHW preparation

- 1. Less peak load ???
- 2. Set point T of the tank
- 3. Circulation is necessary for comfort requirements
- 1. Problematic tank charging program
- 2. Large circulation heat loss
- 3. High DH return temperature

Proposed solution

Determination of the minimum charging flow

- Maintain required DHW temperature during any draw-off period
- Provide sufficient heat including the DHW consumption and heat loss
- Return temperature as low as possible

Demonstration building and dynamic modeling

 Typical multi-storey building in Copenhagen, 15 flats, 750 L tank, daily heat supply 142kWh, 50% for heat loss

Demonstration building and dynamic modeling

Dynamic results :

- 1. All temperatures
- Heat flowrates in any heat transfer process
- 3. System hydraulic regulation

Model results

Piecewise charging

Constant charging flow

Model results

Reduce the heat loss 50%-> 30%

Necessary charging flowrate

Critical temperatures

Results comparison

/	Measurements	Simulated cases		
		Reference case	50% heat loss	30% heat loss
Peak				
Flowrate	0.25	0.25	0.04	0.025
[kg/s]				
Avg. Return T [°C]	57.6	55.9	38.0	33.1
Average cooling [°C]	10.6	14.1	32	36.9

Further improvement

Conclusion

- The DH return temperature from the conventional storage tank system can be reduced with better regulated charging flow
- Reduce the system heat loss can help to reduce the average DH return temperature
- Pracital DHW load profile is of great importance for the control
- Theoretically, the DH return temperature can be further cooled down by installing a circulation heat pump
- Future work:
 - Investigate the system performance with heat pump
 - Compare possible systems with different layouts

Thank you!

Xiaochen Yang <u>Xiav@byg.dtu.dk</u> Department of Civil Engineering Technical University of Denmark