

Astérix et le Chaudron, René Goscinny, Albert Uderzo, Darguad

Tools and methods for modelling district heating systems: A comprehensive comparison

Gerald Schweiger, Richard Heimrath, Peter Nageler, Keith O'Donovan, Michael Salzmann, Harald Schrammel, Ingo Leusbrock

AEE - Institute for Sustainable Technologies (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, AUSTRIA

2017/09/13

Energy Supply and Energy System Planning

Current

fossil fuel based

centrally organized

mono-directional

monosectoral

decoupled

stationary

AEE – INSTITUTE FOR SUSTAINABLE TECHNOLOGIES

EnergySimCity: a modelling toolbox for urban energy systems

"We also can simulate DH systems with our tool!"

4th Generation District Heating

AEE INTEC

Energy 68 (2014) 1-11

Review

4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems

Henrik Lund ^{a,*}, Sven Werner^b, Robin Wiltshire^c, Svend Svendsen^d, Jan Eric Thorsen^e, Frede Hvelplund ^a, Brian Vad Mathiesen ^f

^aDepartment of Development and Planning, Aalborg University, Vestre Havnepromenade 9, DK-9000 Aalborg, Denmark ^bSchool of Business and Engineering, Halmstad University, PO Box 823, SE-30118 Halmstad, Sweden Faulding Research Establishment (BRE), Bucknalls Lane, WD25 9XX Wadford, UK ^aDepartment of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs. Lyngby, Denmark ^bDanfoss District Energy, DK-6310 Nordborg, Denmark

Department of Development and Planning, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark

ARTICLE INFO

ABSTRACT

Article history: Received 24 January 2014 Accepted 23 February 2014 Available online 31 March 2014

Keywords: 4GDH District heating Smart thermal grids Smart energy systems Sustainable energy systems Renewable energy systems This paper defines the concept of 4th Generation District Heating (4GDH) including Cooling and the concepts of smart energy and smart thermal grids. The motive i challenges of reaching a future renewable non-fossil heat supply as part of the im sustainable energy systems. The basic assumption is that district heating and cc role to play in future sustainable energy systems – including 100 percent renew but the present generation of district heating and cooling technologies will have into a new generation in order to play such a role. Unlike the first three generati 4GDH involves meeting the challenge of more energy efficient buildings as well part of the operation of smart energy systems, i.e. integrated smart electricity, § © 2014 Elsevier

Presentation AEE INTEC @ 4GDH conference 2017 | 2017/09/13

Callenges from 4GDH for simulation & optimisation of DHC systems

Features 4GDH

IL1

Integrated part of smart energy systems

Combining energy conservation with expansion of district heating

Intelligent control and monitoring

Loop layouts

Renewable heat and waste heat

low-temperature district heating for space heating and hot water

Challenges for sim. / opt. tools

Robustness & calculation speed

Renewables / storage / prosumers

Co-simulation

Loops / rings / meshes

Zero – Flow / Reverse Flow

Mixed Integer / Unit Commitment

Model predictive control

Dynamic or static?

www.aee-intec.at

IL1 It is not clear what you mean with MPC here: You need a (simplified) model for MPC because you need to optimze the model (12-24 hours) and you have limited time (buildings have a MPC timestep 5-30min, DH I would say 15min-1hour). If you need general information about different techniques for MPC tell me and I will send you an overview.

IL2 This is not a challenge for Simulatino ...Unit commitment (discrete problem) and economic dispatch (continiuos problem) are optimiization problems. So what you need is a model that you can optimize. (i) gradient based optimization (what we do in JModelica) (ii) derivative free optimization (genetic algo. f.i.) or (iii) simulation based optimization (generally no information about derivatives)...the last one means: simulate the model with free variables (they are called optimization variables) and evalute the objective/cost function based on that results (f.i. you need the T_supply temperature at the unit for the objective function: So you takte the simulation result, evaluate the objective, and simulate again.. and again.. and again: vary the input/free/optimization variables (supply temperatures, pressure) very smart = a good simulation based method Ingo Leusbrock, 9/7/2017

Slide 7

Software tools

🚍 Dymola

Dymola (Modelica)

Equation-based modelling, object-oriented
Pro's: Reusability, extensibility, adaptability of models, well suited for optimization
Con's: difficult to go from a mathematical model to numerical solution algorithm

TRNSYS

IDA-ICE

Causal modelling, dynamic
Pro's: Well established, block diagram modelling
Con's: not well suited for optimization, no parallelization possible

Matlab Simulink

Causal modelling, dynamic
Pro's: robust, excellent for control application
Con's: not easy to read & code, reusability

Equation based modelling, object-oriented
Pro's: Highly sophisticated models for buildings and HVAC, parallelizable, variable timestep simulation

Con's: No interface to FM I / Co-sim

STANET

STANET Network Analysis

Stationary, domain-specific
Pro's: data import, GIS-interface, large networks, visualization of results

•Con's: detailed sim of heat pumps, storages, substations, complex hydraulics/controls

Workflow

General comparison

- Basics
- Features
- Comparison with literature results

Case study description

- 16 customers
- Evaluation of period 2016/02/01 – 2016/02/14
- Load profiles based on building simulation
- 3 cases
 - Case 1: Standard case, supply temperature 68 °C , return temperature at customer 43 °C, both fixed
 - Case 2: Extension of different lines
 - Case 3: Case 2 + temperature jump of 20K

www.aee-intec.at

www.aee-intec.at

Case 3: Temperature wave propagation \rightarrow temperature jump

Case 3: Temperature wave propagation: Dymola

AEE INTEC

Case 3: Temperature wave propagation: Dymola & TRNSYS

AEE INTEC

Workflow 2.0

AEE INTEC

General comparison

- Basics
- Features
- Comparis on with literature results

Validation

 Single pipe measurements on lab scale

 Small DH network KU Leuven

Case study

- Pressure drops
- Temperature wave propagation
- Heat

Evaluation

- Numerics, calculation speed
- Ease of use, Co-Sim

Presentation AEE INTEC @ 4GDH conference 2017 | 2017/09/13

Case 1: Maximum number of nodes

AEE INTEC

Simulation of one year

www.aee-intec.at

Presentation AEE INTEC @ 4GDH conference 2017 | 2017/09/13

Case 1: Maximum number of nodes

- Simulation of one year
- TRNSYS
 - 10x possible
 - Tedious process to generate larger networks
- STANET
 - 100x possible
 - Even larger networks possible
- IDA-ICE
 - 80x possible, after that crash
- Dymola
 - 20x possible, but calculation time 80 hours
- 10x: 160 customers, ~50 km net length
- 100x: 1600 customers, ~500km net length

Do we need dynamic simulations?

- Temperature wave propagation
 - static simulations capture general profile, but delay time can be significantly off depending on distance
- Static simulations do not capture pipe cooling patterns during longer periods of zero or close to zero flow events

Slide 20	ide 20	
IL4	Basak has nice results that show that we dont really need dyn. for a lot of applications Ingo Leusbrock, 9/7/2017	
IL5	I worked on conceptually define: What do we do with our models, what accuracy is relevant I called it "the myth of accuracy" based on a presentation at the conference I saw. I can send you the ideas or we can discuss this the next days (skype??)	
	It would be great if you could "provozieren" the community. The colleague from Leuven is doing this at the croatian conference (I convinzed him haha).	

Ingo Leusbrock, 9/7/2017

Zero-flow events: heat Loss in Consumer Supply Pipe

AEE INTEC

Do we need dynamic simulations?

- Temperature wave propagation
 - static simulations capture general profile, but delay time can be significantly off depending distance
- Static simulations do not capture pipe cooling patterns during longer periods of zero or close to zero flow events
- 4GDH components (storage, P2H, prosumers) experience high fluctuations in temperature which cannot be captured from static simulations
- Complex systems, control strategy
- But: Dynamic simulations are however significantly slower (for obvious reasons) and more complex
 - Use static when possible, use dynamic when necessary?

Slide 24	
IL4	Basak has nice results that show that we dont really need dyn. for a lot of applications Ingo Leusbrock, 9/7/2017
IL5	I worked on conceptually define: What do we do with our models, what accuracy is relevant I called it "the myth of accuracy" based on a presentation at the conference I saw. I can send you the ideas or we can discuss this the next days (skype??)
	It would be great if you could "provozieren" the community. The colleague from Leuven is doing this at the croatian conference (I convinzed him haha).

Ingo Leusbrock, 9/7/2017

Conclusions and outlook

Astérix et le Chaudron, René Goscinny, Albert Uderzo, Darguad

Conclusions and outlook

for district heating and cooling systems, Energy Conversion and Management, B. van der Heijde et al., Dynamic equation-based thermo-hydraulic pipe model https://doi.org/10.1016/j.enconman.2017.08.072

AEE INTEC

- All tools show comparable results for standard situations
 - No need to develop new tools for DH modelling as Annex 60 pipe model / Carnot toolbox is open source
- More advanced situations need dynamic simulations
 - Tradeoff: increased complexity, calculation speed
- Static simulations may under- and/or overestimate certain effects
- Validation to be finalized
 - Conclusions then possible for error of indivual programs
- 2 papers in preparation
 - Validation
 - Case studies

Thank you for your attention

Ingo Leusbrock <u>i.leusbrock@aee.at</u> <u>@leusbrocki</u>

Conclusions and outlook

- All tools show comparable results for standard situations
 - No need to develop new tools for DH modelling as Annex 60 pipe model / Carnot toolbox is open source
- More advanced situations need dynamic simulations
 - Tradeoff: increased complexity, calculation speed
- Static simulations may under- and/or overestimate certain effects
- Validation to be finalized
 - Conclusions then possible for error of indivual programs
- 2 papers in preparation
 - Validation
 - Case studies

AEE INTEC

TRNSYS types

500 mi

Need for improved pipe flow models, now in development

Problem encountered while simulating Time modulation case: Time delay during temperature change is too simplified.

