

re INVEST

How low can the heating supply temperature be in single family houses in Norway?

Maria Justo Alonso and Igor Sartori

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu

Typologies

	Region	Year Class	Classification	Single-Family House	Terraced House	Multi-Family House	Apartment
1	National (not region specific)	1955	generic	NO.N.SFH.01.Gen	NO.N.TH.01.Gen		NO.N. AB.0
2	National (not region specific)	1956 1970	generic	NO.N.SFH.02.Gen	NO.N.TH.02.Gen		NO.N.AB.0
3	National (not region specific)	1971 1980	generic	NO.N.SFH.03.Gen	NO.N.TH.03.Gen		NO.N.AB.0
4	National (not region specific)	1981 1990	generic	NO.N.SFH.04.Gen	NO. N. TH. 04. Gen		NO.N. AB.0
5	National (not region specific)	1991 2000	generic	NO. N.SFH.05. Gen	NO. N. TH. 05. Gen		NO. N. AB. 0
6	National (not region specific)	2001 2010	generic	NO. N. SFH. 06. Gen	NO. N. TH. 06. Gen		NO.N. AB.0
7	National (not region specific)	2011	generic	NO.N.SFH.07.Gen	NO.N. TH. 07. Gen		NO.N.AB.0

Source: EPISCOPE prosject (Intelligent Energy Europe) Energy Performance Indicator Tracking Schemes for the Continuous Optimization of Refurbishment Processes in European Housing Stocks (http://episcope.eu)

Age classes:

- Built before 1955 1)
- 1956 19702)
- 1971 19803)
- 1981 19904)
- 1991 20005)
- 2001 20106)
- 2011 20507)

Building types:

- Single family house (SFH)
- Small house (TH)
- Apartment block (MFH/AB)

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu

www.heatroadmap.eu

4.Gen

4DH

OSINTEF **O**NTNU

SFH 1971 - 1980

	Initial standard		Renovated standard		Tek10 standard		
Component	Specification	U-value initial built (W/m²K)	Specification	U-value standard renovation (W/m²K)	Specification	U-value TEK10 renovation (W/m²K)	
Windows	Double-glazed window, regular glass, air	2.60	Double-glazed window, one LE- coating, air	1.90	50 mm additional min wool in cold attic	0.16	
Roof	48x198mm beam 200mm min wool	0.20	50 mm additional min wool in cold attic	0.16	150 mm additional min wool on the outside	0.19	
External wall	Light timber framework,48x98	0.41	50 mm additional min wool on the outside	0.29	TEK10-window	1.20	
Floor	48x148mm beam 150mm min wool	0.22	50 mm additional min wool in cold basement	0.20	100 mm additional min wool in cold basement	0.15	
Fixed infiltration (ACH)	-	4	-	2	-	0.6	

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu

re

INVEST

NEIGHBOURHOODS

Limitations

- 4 occupants
- Only space heating : double string system
- Oslo climate _
- Dimensioning for a normal year without internal heat loads
- No outdoors temperature compensation of DH —
- Maximal water flow rate 800 kg/h —

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu

Impact of DH temp. reduction in older buildings without adaptation (focus on heating)

ONTNI

() SINTEF

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

INVEST

Impact of DH temp. reduction in older buildings without adaptation (focus on heating)

Non-renovated building

- Radiator area not increased, limitation on the supplied water -> comfort temperature 20 degrees not achieved
- With the original radiator we need to increase supply temperature (local) about 10-15 degrees
- Otherwise increase water flow rate (almost doubling) to achieve 20 degrees

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu

INVEST

Use of low temperature DH, new window and standard renovation

Renovated building

- Return temperature profile varies
- Return temperature to the net is most affected of renovations on the building envelope, windows and airtightness

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

SINTEF ONTNU

Use of low temperature DH in Tek10 renovation

Building that are adapted to low temperatures

- Reduced heating demands
- Return temperature can be highly reduced

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

roadmap.eu 🕥 SINTEF 🙆 NTNU

INVEST

Limitations

- People are not happy with "only 20 degrees "=>want higher temp in certain rooms. Especially after renovation
- Water quantity and pipe diameter
- Investing in networks

Possible solutions

- Local supply in buildings to avoid increase on DH pipe
- Local networks connected to DH
- Connections in supply and return

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

Conclusions

- Simulations of several types of buildings still remain
- Capacity:
 - Low supply temperature \rightarrow Low return even more important
 - If the building is not renovated and the temperature is reduced in the net, local peak load systems are needed
 - If the house is renovated, return temperature to the grid can increase and it becomes more important to check if the house can be connected to supply or return

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

ONTNI

SINTEF

Thank you for your attention!

