

Materials Science & Technology

3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND $4^{\tau H}$ GENERATION DISTRICT HEATING

The Influence of Participation in Ancillary Service Markets on Optimal Energy Hub Operation

Foteini Rafaela TSAOUSI

Co-authors: Dr. Andrew BOLLINGER, Conor O' MALLEY, Prof. Gabriela HUG

Copenhagen, 12.09.2017

Foteini Rafaela Tsaousi - Screening of a Lifecycle Assessment (LCA) of and Advanced Adiabatic Compressed Air Energy Storage (AA – CAES)

Outline

- Introduction Energy Hubs, Ancillary Services and Goal
- Model Assumptions and Objective Function
- Evaluation Assessment of Stochastic Modelling
- Case Studies Parameter Sensitivity Analysis
- Conclusion
- Outlook

Introduction – Energy Hubs (EH)

Conceptual approach to describe District Multi Energy Systems (DMES)

Introduction – Ancillary Services (AS)

Tertiary Control Reserve

Source: Survey on Ancillary Services Procurement, Balancing Market Design 2015, ENTSO-E, 2016

Introduction – Goal

Model development to include AS in the EH modelling tool

Model development that determines the optimal bidding strategy

□ Investigation of important parameters that affect the EH operation

Investigation of possible profitable scenarios under AS participation

Outline

Introduction – Energy Hubs, Ancillary Services and Goal

Model – Assumptions and Objective Function

Evaluation – Assessment of Stochastic Modelling

Case Studies – Parameter Sensitivity Analysis

Conclusion

Outlook

Model – Products and Time Frame

- Positive and Negative TRL
- Week-ahead and Day-ahead products
- Optimization horizon: 1 week
- Simulation horizon: 1 year

Model – MILP

Model – Two-Stage Stochastic MILP

Model – Objective Function (Total Cost)

Model – Objective Function (Total Cost)

Outline

Introduction – Energy Hubs, Ancillary Services and Goal

Model – Assumptions and Objective Function

Evaluation – Assessment of Stochastic Modelling

Case Studies – Parameter Sensitivity Analysis

Conclusion

Outlook

Evaluation – Base Case Comparison

Definition of Base Case

Comparison of three different versions of Base Case:

Materials Science & Technology

Evaluation – Total Cost

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Outline

Introduction – Energy Hubs, Ancillary Services and Goal

Model – Assumptions and Objective Function

Evaluation – Assessment of Stochastic Modelling

Case Studies – Parameter Sensitivity Analysis

Conclusion

Outlook

Case Studies – Parameter Sensitivity Analysis

Case	Modified Parameter	New Value	Base Case Value	Unit
1		0.03		
2	CHP Operating Cost	0.06	0.09	CHF/kWh
3		0.12		
4		-0.08		
5	TRE ⁻ Bid Price	-0.02	0.08	CHF/kWh
6		0.02		

Case Studies – Total Cost

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Outline

Introduction – Energy Hubs, Ancillary Services and Goal

Model – Assumptions and Objective Function

Evaluation – Assessment of Stochastic Modelling

Case Studies – Parameter Sensitivity Analysis

Conclusion

Outlook

Conclusion

□ Model is capable of determining the optimal bidding strategy of the EH

Modeling evaluation shows that the uncertainty is captured well

Case Studies show Parameter Sensitivity

Small Margin for Profit

Outlook

Model is extendable to include Primary, Secondary Control Reserve and Control Pooling

Design Optimization

Capacity Market Uncertainty

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Materials Science & Technology

3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING

Thank you for your attention!

Model (4/7) – Assumptions

- Capacity bid always accepted
- □ All bidding decisions at the beginning of the week
- No minimum bid size considered
- Energy provision every hour
- Perfect knowledge of EH demand and solar energy input

Model (7/7) – Uncertainty

Time series of the TRE prices

 $c_{1,s}^{m,pos}...c_{T,s}^{m,pos}, c_{1,s}^{m,neg}...c_{T,s}^{m,neg}$

Scenario generation

- Decorrelation technique
- ARIMA model

Nomenclature					
$c_{t,s}^{m,pos}$	TRE ⁺ Market Scenario Price				
$c_{t,s}^{m,neg}$	TRE ⁻ Market Scenario Price				

Evaluation – Day-Ahead, Average Bid Size

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Case Studies – CHP Cost, Activation Income

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Case Studies – TRE⁻ Bid Price, Activation Income

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Case Studies – Cost Deviation from No-Bidding

Conclusion

□ Model is capable of determining the income of TRL for EH

- Negative Control Bids are more frequent
- Day-Ahead Products are preferable

Case Studies show Parameter Sensitivity

- CHP cost has a great influence
- TRE⁻ bid price is important for frequency of activation

Small Margin for Profit

Donnerstag, 14. September 2017

Ancillary Services (AS) in Switzerland

Frequency Control

□ Voltage Support

Compensation of active power losses

- Black Start and island operation capability
- System coordination
- Operational measurement

Materials Science & Technology

Frequency Control

Capacity								
PRL SRL TRL								
Procurement Scheme	Market	Market	Market					
Minimum Bid size (MW)	1	5	5					
Product Resolution (time)	Week(s)	Week(s)	Day(s)					
Distance to Real Time of Auction	Day(s)	Day(s)	Day(s)					
Settlement Rule	Pay as Bid	Pay as Bid	Pay as Bid					
Cost Recovery Scheme	Grid Users	Grid Users	Grid Users					
Monitoring	Real Time	Real Time	Real Time					
Product	Symmetric	Symmetric	Asymmetric					
Tender Period	Weekly	Weekly	Weekly or Daily					
Capacity Provider	Generators + Load + Pump Storage units pumping							

Frequency Control

Energy							
PRL SRL TRL							
Procurement Scheme	_	-	Market				
Activation Rule	-	Pro-Rata	Merit Order				
Minimum Bid size (MW)	_	_	5				
Product Resolution (time)	-	-	Hour or Blocks				
Distance to Real Time of Auction	-	-	Hour or Blocks				
Settlement Rule	-	Hybrid	Pay as Bid				
Cost Recovery Scheme	-	BRP	BRP				
Monitoring	-	Ex Post Check	Ex Post Check				
Product	Symmetric	Symmetric	Daily Tenders for 4h- Blocks				
Activation Time	30s	5m	15m				
Partially Activated Product	-	-	No				
Volume of Control Power Required (MW)	+/- 74	+/-400	-450,-300				
Link	Control Signal	Control Signal	Email, Call				
Remuneration of Energy	-	According to Spot Market Price	For 4-h Block Offer and Energy Used				

innologies and systems

Model – Definition of Bidding Capacities

$$p_t^{j,k} = p_t^{g,k} + p_t^{st,k} \quad for \quad k = positive \quad (1)$$

$$p_t^{j,k} = p_t^{st,k} \quad for \quad k = negative$$
 (2)

 $\Box p_t^{st,k}$: Bidding Capacity Storage

 $\square p_t^{g,k}$: Bidding Capacity from Generating Units

Nomenclature					
i	Conversion Technologies				
j	Week or Day Ahead				
k	Positive or Negative				
t	Time				
x	Energy Carrier				
	4th Generation District Heating Technologies and Systems				

Model – First Stage Constraints

Product Time Frame

 $p_t^{j,k} = p_{t+1}^{j,k} \quad for \quad mod(t, 168) \neq 0, \quad j = w$

 $p_t^{j,k}=p_{t+1}^{j,k} \quad for \quad mod(mod(t,24),4)
eq 0, \quad j=d$

Minimum Bid Size

$$p_t^{j,k} \leq \beta_t^{j,k} \ast M$$

$$p_t^{j,k} \ge eta_t^{j,k} st \underline{p}^{j,k}$$

Nomenclature					
i	Conversion Technologies				
j	Week or Day Ahead				
k	Positive or Negative				
t	Time				
x	Energy Carrier				
	4h Generation District Heating Technologies and Systems				

Model – Second Stage Constraints

Positive Control

$$p_t^{g,k} \leq \sum_i^I (h_i^N - h_{t,i,x,s}C_{x,i})$$

$$p_t^{st,k} \leq \Omega_{t,s,x}^{soc} - \Omega_x^N \ast \underline{\omega}$$

Negative Control

$$p_{t,x}^{st,k} \leq \Omega_x^N - \Omega_{t,s,x}^{soc}$$

Nomenclature				
i	Conversion Technologies			
j	Week or Day Ahead			
k	Positive or Negative			
t	Time			
x	Energy Carrier			
	91/11			

4th Generation District Heating Technologies and Systems

Model – Energy Market Constraints

Positive Control

$$lpha_{t,s}^{j,k} = egin{cases} 1, & ext{if} \quad \widehat{c}^{j,k} \leq c_{t,s}^{m,k} \ 0, & ext{otherwise} \end{cases}$$

Negative Control

$$\alpha_{t,s}^{j,k} = \begin{cases} 1, & \text{if} \quad \widehat{c}^{j,k} * c_{t,s}^{m,k} > 0 \quad and \quad \left| \widehat{c}^{j,k} \right| \le \left| c_{t,s}^{m,k} \right| \\ 0, & \text{if} \quad \widehat{c}^{j,k} * c_{t,s}^{m,k} > 0 \quad and \quad \left| \widehat{c}^{j,k} \right| \ge \left| c_{t,s}^{m,k} \right| \\ 1, & \text{if} \quad \widehat{c}^{j,k} * c_{t,s}^{m,k} < 0 \quad and \quad \widehat{c}^{j,k} > 0 \\ 0, & \text{if} \quad \widehat{c}^{j,k} * c_{t,s}^{m,k} < 0 \quad and \quad \widehat{c}^{j,k} < 0 \\ 0, & \text{if} \quad \widehat{c}^{j,k} * c_{t,s}^{m,k} = 0 \end{cases}$$

Evaluation - Results

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Evaluation- Results

Materials Science & Technology

Evaluation- Results

Total Avail. Income [thous. CHF]				
Perfect Forecast	17.8			
Stochastic	5.9			
No-Bidding	0			

Total Activ. Income [thous. CHF]				
Perfect Forecast	-14.4			
Stochastic	-12.2			
No-Bidding	0			

Availability Income

Activation Income

Materials Science & Technology

Evaluation

Period		From	07.11.20)16		19	
		Until	07.11.20)16		19	
Time		00 40					
TIME		08 - 12		~			
		SHOW					
Period: 0	7.11.2016 - 07.	11.2016					Ŀ
Date	<u>Time</u>	<u>Descriptic</u>	<u>on</u>	Power offered <u>MW</u>	Power	allocated <u>MW</u>	Price CHF/MW
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	15.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	7		7	19.08
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	37.80
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	38.80
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		10	39.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		10	39.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		10	48.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	20		20	48.44
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	50.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	55.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		10	58.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	85.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		10	89.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	100		5	100.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	5		5	130.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	30		30	130.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		10	145.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	20		20	156.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	20		20	180.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	35		30	199.00
07.11.2016	08:00 - 12:00	TRL+s0	8-12	10		10	200.00
07.11.2016	08:00 - 12:00	TRL+ s 0	8-12	80		40	235.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	10		0	300.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	25		0	1'000.00
07.11.2016	08:00 - 12:00	TRL+_s_0	8-12	20		0	1'000.00

Power		Positive	\sim		
Period		From 06	11 2016	19	
		Until 06	11 2016		
		00.	11.2010	19	
Time		08 - 12	\sim		
		SHOW			
		3101			
Period: 0	6.11.2016 - 06.1	11.2016			T
<u>Date</u>	<u>Time</u>	Description	Power offered <u>MW</u>	Power allocated <u>MW</u>	Price CHF/MW
06.11.2016	08:00 - 12:00	TRL+_s_08-12	100	90	1.80
06.11.2016	08:00 - 12:00	TRL+_s_08-12	20	20	2.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	10	2.30
06.11.2016	08:00 - 12:00	TRL+_s_08-12	100	59	2.32
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	9	2.43
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	10	2.70
06.11.2016	08:00 - 12:00	TRL+_s_08-12	15	15	2.80
06.11.2016	08:00 - 12:00	TRL+_s_08-12	20	20	3.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	30	30	3.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	3.20
06.11.2016	08:00 - 12:00	TRL+_s_08-12	20	20	3.20
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	3.50
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	3.60
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	3.60
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	3.70
06.11.2016	08:00 - 12:00	TRL+_s_08-12	5	5	3.89
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	4.80
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	8.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	5	0	20.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	20.10
06.11.2016	08:00 - 12:00	TRL+_s_08-12	50	0	38.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	5	0	50.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	8	0	51.00
06.11.2016	08:00 - 12:00	TRL+_s_08-12	10	0	145.00

Donnerstag, 14. September 2017

Scenario Forecast

Case Studies – Parameter Sensitivity Analysis

Case	Modified Parameter	New Value	Base Case Value	Unit
А		0.03		
В	CHP Operating Cost	0.06	0.09	CHF/kWh
С		0.12		
D	Heat Storage Capacity	0	1	MWh
E		2		
F	Heat Pump Capacity	0	2.2	MW
G		4		
Н		-0.08		
Ι	TRE ⁻ Bid Price	-0.02	0.08	CHF/kWh
J		0.02		

Materials Science & Technology

Case Studies – Total Cost

EMPA

Case Studies – Availability Income

Foteini Rafaela Tsaousi - The influence of participation in ancillary service markets on optimal energy hub operation

Case Studies – Cost Deviation from No-Bidding

3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 2017

The Influence of Participation in Ancillary Service Markets on Optimal Energy Hub Operation

Foteini Rafaela Tsaousi

12/09/2017

Co-authors: Dr. Andrew Bollinger, Conor O' Malley, Prof. Gabriela Hug

