

Energy efficiency of district networks compared with individual systems

Ashreeta Prasanna, Viktor Dorer

Energy supply for mixed-use districts

- New-build mixed districts
- Balance of social, economic and environmental needs
- Design considering both demand and supply

Mixed-use districts and heat pump systems

Low temperature district heating **Decentralised HP** (8°C - 22°C supply) Low temperature district heating **Centralised ASHP/ GSHP** (55°C supply, 20°C return)

ASHP/GSHP

(35°C SH, 55°C DHW,

<18°C Free-cooling/Cooling)

Demand profiles of different building types

Multi-family house (MFH)			Office building		
SH kW/m²/y	DHW kW/m²/y	Cooling kW/m²/y	SH kW/m²/y	DHW kW/m²/y	Cooling kW/m²/y
21.5	19.2	3.3	39.4	6.3	20.5

Data for profiles from PLUSQUA project, report accessible at:

http://www.bfe.admin.ch/forschunggebaeude/02107/02134/index.html?lang=de&dossier_id=06738

Methodology: District with LTN and decentralized HPs

Methodology: District heating (55°C) with centralized ASHP

Methodology: District heating (55°C) with GSHP

Methodology: Individual buildings with ASHPs

Methodology: Individual buildings with GSHPs

Comparison of COP

Comparison of electricity demand

Case	LTN 20°C	ASHP DH 50°C	GSHP DH 50°C	ASHP Building	GSHP Building	User demand	PV
No.	[MWh/y]	[MWh/y]	[MWh/y]	[MWh/y]	[MWh/y]	[MWh/y]	[MWh/y]
1	300	294	262	322	294	189	318
2	308	321	280	342	303	318	318
3	316	348	297	362	311	448	318
4	324	375	314	382	320	577	318
5	332	402	331	402	328	707	318

Case	MFH Area	Office Area	PV Area
No.	[m²]	[m ²]	[m ²]
1	20,000	0	2000
2	15,000	5,000	2000
3	10,000	10,000	2000
4	5,000	15,000	2000
5	0	20,000	2000

Comparison of electricity demand

Electricity required to supply heating and cooling

Total electricity required (including households and offices)

Electricity from rooftop PV (hourly balance)

Electricity balance with rooftop PV

Case 3: GSHP Bld

— PV — GSHP Bld

Case 5: GSHP DH

- PV - GSHP DH

Discussion and future work

- Electricity demand similar regardless of heating system chosen due to high influence of user demand
- GSHP systems which can supply both heating and cooling are less sensitive to change in use (needs to be validated for other district types)
- Certain system choices require additional equipment (additional chillers for cooling, or solar thermal panels for re-generation of borehole fields)
- Balance with PV (production and demand) higher for certain district types
- Further analysis of sensitivity to demand profiles and electricity for pumping
- Further analysis considering districts with additional use-types (industry, restaurants, etc.)
- Include of cost analysis in tool

HUES Platform – Resources

An ecology of open source computational resources to support distributed energy systems (DES) design and control

Resources:

Models & algorithms

Modeling tools

Data

Code

Purpose:

- 1. To **accelerate DES research** by making models, data and code more accessible and understandable to researchers.
- 2. To **improve DES design & control** in practice by developing innovative, validated tools for practitioners.

Publicly accessible and open source: <u>https://hues-platform.github.io</u>

Integrates ongoing research in:

sccer | future energy efficient buildings & districts

Thank you for your time Questions? Ashreeta.Prasanna@empa.ch

This research has been financially supported by the Energy Funding Programme of CTI within the SCCER FEEB&D.

Further information at <u>www.sccer-</u> <u>feebd.ch</u>

In cooperation with the CTI

Energy funding programme Swiss Competence Centers for Energy Research

Swiss Confederation

Commission for Technology and Innovation CTI

Leseme University of Applied Sciences and Arts HOCHSCHULE LUZERN Esolosening and Architecture

n w Fachhochschule Nordwestschweiz

ETHzürich

Direction of **energy** flow

		unidirectional	Bi-directional	
of fluid /	directed	Heat or cooling operation, central pump, forward and return flow clearly defined	Heat and cooling operation, central pump, mix of temperatures in return flow pipe	
Direction	non directed	n.a.	Heat and cooling operation, decentralized pumps, no clearly defined forward or return flow pipe	