

Hourly optimization model for district heating systems including building retrofit – case study for the city of Velika Gorica

Hrvoje Dorotić, Matija Pavičević, Tomislav Novosel, Tomislav Pukšec, Neven Duić

Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb Contact: <u>hrvoje.dorotic@fsb.hr</u>

Smart Energy Systems and 4th Generation District Heating 2017, Copenhagen

Content

- Why optimization of DH systems?
- Method
- Input data
- Scenarios
- Results
- Conclusions

- Road to 4DH
- Many technologies, energy and mass streams will be involved
 Interestion
 Interestion
 Interestion

Finding the optimal solution presents a great challenge

Optimization of DH systems

- Satisfy demand
- Investment and yearly O&M expenses
- Analyse GHG emissions

H2RES - Energy system simulation/optimization

- MATLAB+OPTI Toolbox (SCIP)
- Mixed integer linear optimization
- DH systems
- Technology capacity and operation of supply
- Minimize investment
- To be included in the PLANHEAT tool

Objective function

Investment and operation cost

$$\min(Cost) = \sum_{i=1}^{n} Investment_{technology,i} + \sum_{i=1}^{n} O \& M_{technology,i} - \sum_{i=1}^{n} Aditional \ income_{technology,i}$$

- Investment = f(technology, capacity, specific price, demand)
- 0&M = f(technology, fuel, capacity, specific prices, demand)
- Aditional income = f(technology, specific prices, etc.)

Input data

•

- Technology: CHP, heat-only boiler, heat pump, electrical heater, solar thermal, thermal storage (seasonal and daily), including builling retrofit
- Min and max possible capacities
 - Other... × 10⁵ Electric heater - Specific costs Heat pump - Specifc costs < 10⁵ Specific price [€/MW] Specific price [€/MW] 8.0 1 5.1 8.0 8.0 8.0 1 5.1 8.1 1 5.1 2 6 8 10 5 10 15 20 0 4 0 Capacity [MW] Capacity [MW] Solar thermal - Specifc costs Thermal storage - Specific costs Specific price [€/MWh] Specific price [€/m2] 09 01 08 05 8000 6000 4000 2000 0 2 4 6 8 10 10¹ 10^{2} 10³ 10⁴ Capacity [m2] $\times 10^4$ Capacity [MWh]

7

Output data

- <u>Optimal</u> unit's capacities and thermal energy production distribution with minimal overall cost
- Total cost of investment and O&M
- Levelised cost of heat (LCOH)
- Total emissions of CO₂

• Scenario 1 – reference scenario

• Scenario 2

• Scenario 3

• Scenario 4

11

DEPARTMENT OF ENERGY, POWER ENGINEERING AND ENVIRONMENT

🕑 😢 FSB

• Scenario 5

Electrical Scenario 6 • energy market CHP (biomass) Heat only boiler Demand (natural gas) Heat pump Thermal Solar thermal storage Electrical heater

• Scenario 7

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

DEPARTMENT OF ENERGY, POWER ENGINEERING AND ENVIRONMENT

Input

Scenario number	Heat only boiler (min/max) [MW]	Electrical heater (min/max) [MW]	Heat pump (min/max) [MW]	Solar thermal collectors (min/max) [m ²]	CHP (min/max) [MW]	Storage (min/max) [MWh]	Building retrofit (min/max) [%]
Scenario 1	40/40 (heating oil)	-	-	-	-	-	-
Scenario 2	40/40 (natural gas)	-	-	-	-	-	-
Scenario 3	0/40 (natural gas)	0,5/20	0/2,5	-	-	0/200	-
Scenario 4	0/40 (biomass)	0,5/20	0/2,5	-	-	0/200	-
Scenario 5	0/40 (biomass)	0,5/20	0/2,5	10000/50000	-	0/12000	-
Scenario 6	0/30 (biomass)	0,5/20	0/2,5	2000/10000	20/20	0/12000	-
Scenario 7	0/40 (biomass)	0,5/20	0/2,5	10000/50000	-	0/12000	0/50%

DEPARTMENT OF ENERGY, POWER ENGINEERING AND ENVIRONMENT

15

DEPARTMENT OF ENERGY, POWER ENGINEERING AND ENVIRONMENT

Results – unit's capacities

Scenario number	Heat only boiler [MW]	Electrical heater [MW]	Heat pump [MW]	Solar thermal collectors [m ²]	CHP [MW]	Storage [MWh]	Building retrofit [%]
Scenario 1	40	-	-	-	-	-	-
Scenario 2	40	-	-	-	-	-	-
Scenario 3	20,3	0,5	2,5	-	-	200	-
Scenario 4	20,35	0,5	2,5	-	-	200	-
Scenario 5	15,67	0,5	2,5	10.000	-	600	-
Scenario 6	0	0,5	2	2000	20	72	-
Scenario 7	2,7	0,5	2	10.000	-	4800	50%

Results - LCOH and CO₂ emissions

Heat supply distribution

Thermal energy storage

Thermal storage level [MWh]

Conclusion

- DH system optimization has been shown, including building retrofit
- Due to low electrical energy prices, heat pumps are excessively used
- CHP and solar thermal aren't included in the optimal solution due to their high investment cost
- Building retrofit combined with solar thermal provides the lowest CO₂ emissions

Thank you for your attention

hrvoje.dorotic@fsb.hr

Financial support from the European Union's Horizon2020 projects PLANHEAT (grant agreement 723757), CoolHeating and Heat Roadmap Europe are gratefully acknowledged.

