Integrating electrical and thermal domains - A case study of the Danish Technical University campus

Thibaut Richert* (PhD student) Oliver Gehrke (Scientist)

DTU - Energy System Operation and Management (ESOM)

September 12, 2017

DTU camp

Use cases

lodelling

Conclusion

Agenda

- Background Context & Problem statement
- DTU campus
- Use Cases
- Modelling experience
- Conclusion

Background & Context ●000	DTU campus 000000		Conclusion 00

Background & Context

What big picture are we looking at?

- Integrated energy systems
- Multi-carrier energy systems
- Multi-source multi-products energy systems
- Energy systems coupling
- Multi-domain energy systems (MES)

	DTU campus		Modelling	Conclusion
0000	000000	00000	00	00

Background & Context

What big picture are we looking at? - 4GDH and SMART GRID

credit: 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems - Lund et al.

Background & Context 00●0	DTU campus 000000		Conclusion
Background &	Context		

What will change?

What the future looks like in integrated energy systems

- Renewables
- Distributed energy resources
- Power-to-heat technologies
- Bi-directional flows
- Local heat injection
- Control aspect become crucial

Communication will play a key role

What challenges are faced in integrated electro-thermal systems

- Complexity
- Temporal and spatial
- Correlation of uncertainties
- Operational time scales
- What about control?
- Characterisation, aggregation & simplification

 \rightarrow Properly described Use Cases (UCs) based on a holistic methodology

Background & Context 0000	DTU campus ●00000		Conclusion
DTU campus			

Overview

Key figures

- $\bullet\ \simeq\ 11.000\ students$
- $\bullet\ \simeq 6.000\ {\rm staff}$
- Roughly 2km²

Background & Context	DTU campus 0●0000		Conclusion

System configuration - on Scale

Background & Context		Modelling	Conclusion
	000000		

System configuration - Simplified

Key figures

- 68 Loads
- 126 Nodes
- Loops
- 3 critical points Bypass
- 2 supply loops
- \simeq 60.000 MWh/year heat

Potential

- 12MW of cooling (peak)
- 6MW of cooling installed
- Heat is wasted

Background & Context		Modelling	Conclusion
	000000		

System configuration - Future Heat pump I

Background & Context		Modelling	Conclusion
	000000		

System configuration - Future Heat pump II

Background & Context		Modelling	Conclusion
	00000		

System configuration - Future Heat pump III

Background & Context	DTU campus		Modelling	Conclusion
0000	000000	00000	00	00
Use cases				
Criteria - system oper	ation focus			
Cincena - system oper				

Requirements

- 1) UCs must be in line with the energy system evolution(s)
- 2) UCs must address some of the operational challenges
- 3) there should be a business case for the UCs
- 4) the UCs should grasp the control interaction of MES

Background & Context	DTU campus 000000	Use cases 0●000	Conclusion 00
llse cases			

Definition

- UC1 Decentralized feed-in in the DH network
- UC2 District heating system providing ancillary services to the electrical system
- UC3 Electrical system providing services to the heat distribution system

Background & Context	DTU campus 000000	Use cases 00●00	Conclusion 00
Use cases			
Holistic view			

System configuration

Domains refer to all physical or cyber-components belonging to a class of infrastructure

Background & ContextDTU campus
000000Use cases
000000Modelling
00Conclusion
00UC2 - DH provides ancillary services to the electrical
system (TSO/DSO):Services to the electrical

- Need for balancing ancillary services
- Proliferation of DERs (e.g EVs)
- Aggregation
- Emergence of new market platform

Background & ContextDTU campus
000000Use cases
000000Modelling
00Conclusion
00UC3 - Heat peak-load shaving (mainly small) - Electrical
system providing service to the heating system

- Heat load forecast
- Time lag (e.g due to high inertia)
- Change in operation of DH networks

Dynamic models are essential to understand interaction and characterize propagation of transient response from one system to another during normal and abnormal operation.

- Temperatures, flows, pressures, energy and power for the Heating domain.
- Energy, power, flows, voltage, frequency for the Electrical
- ICTs are beyond the physical coupling but of paramount importance when considering control aspects of these cyber-physical systems.

Background & Context	DTU campus	Use cases	Modelling	Conclusion

Modelling experience

- Modelling DH network is one "simple" thing
- Many tools exist
- Holistic vision becomes limiting
- API/co-simulation capable tools
- Co-simulation is a good candidate

Background & Context	DTU campus 000000		Conclusion ●0
Conclusion			
What is next?			

- UCs designed and representative of the future (hopefully)
- Dependant on external factors (i.e markets, policies, technologies)
- Maximize asset use
- DTU campus network is an interesting case study
- Data is key
- No single tool exists to address all UCs
- Co-simulation platform?
- Object-oriented, multi-domain modelling Modelica?

Background	

DTU campi

Use cases 00000 Modelling 00 Conclusior

Conclusion

