

Coupling a power system model to a building model to evaluate the flexibility potential of DSM at country level

Elodie Ciciriello, Emeline Georges, <u>Sylvain Quoilin</u>

www.jrc.ec.europa.eu

Joint Research Center (JRC) University of Liège (Belgium)

Serving society Stimulating innovation Supporting legislation

Introduction

Objective of the work:

- develop an integrated model of the heat demand coupled to the power system
- assess the potential of the heat demand as a flexibility provider

Optimisation model minimizing the total operational system cost with

- supply side: unit commitment and dispatch model
- heat demand: space heating and domestic hot water
- electric heating: heat pumps and water heaters

Dispa-SET in a nutshell

- <u>Unit commitment and dispatch</u> <u>model</u> of the European power system
- Optimises <u>short-term scheduling</u> of power stations in large-scale power systems
- Assess <u>system adequacy and</u> <u>flexibility needs</u> of power systems, with growing share of renewable energy generation
- Assess feasibility of power sector solutions generated by the JRC-EU-TIMES model

Dispa-SET 2.1: unit commitment and dispatch model

Formulated as a tight and compact mixed integer program (MILP) Implemented in Python and *GAMS*, solved with *CPLEX*

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

5

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,h} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,k} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

7

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,k} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,k} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,k} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,h} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

$$\begin{split} \min \sum_{i} SystemCost_{i} \\ \sum_{u} (P_{u,i} \cdot \textit{Location}_{u,n}) + \sum_{l} (\textit{Flow}_{l,i} \cdot \textit{LineNode}_{l,n}) \\ = \textit{Demand}_{\textit{DA},n,h} + \sum_{r} (\textit{StorageInput}_{s,h} \cdot \textit{Location}_{s,n}) - \textit{ShedLoad}_{n,n} \\ -\textit{LostLoadMaxPower}_{n,i} + \textit{LostLoadMinPower}_{n,i} \end{split}$$

12

Dispa-SET 2.1: typical outputs

$$T_t = \mathbf{A}T_{t-1} + \mathbf{B}U_t \tag{4}$$

Space heating

$$T_t = \mathbf{A}T_{t-1} + \mathbf{B}U_t \tag{4}$$

Domestic hot water

 $T_t = (T_w)_t$

 $U_t = \begin{pmatrix} T_{out} \\ T_{cw} \\ \dot{Q}_{heat} \end{pmatrix}_t$

Heat pumps: variable speed air-to-water

- ► $T_{out,n} = 7^{\circ}C$, $T_{su,n} = 35^{\circ}C$
- ► $\dot{Q}_n = 11, 2 \ kW \ / \ 14 \ kW$
- ▶ *COP*_n = 3,95
- Full load characteristics: $f(T_{su}, T_{out})$

Heat pumps: variable speed air-to-water

- $T_{out,n} = 7^{\circ}C, T_{su,n} = 35^{\circ}C$
- ▶ $\dot{Q}_n = 11,2 \ kW \ / \ 14 \ kW$
- ▶ *COP*_n = 3,95
- Full load characteristics: $f(T_{su}, T_{out})$
- Partial load performance

Heat pumps: variable speed air-to-water

- $T_{out,n} = 7^{\circ}C, T_{su,n} = 35^{\circ}C$
- ▶ $\dot{Q}_n = 11,2 \ kW \ / \ 14 \ kW$
- ▶ *COP*_n = 3,95
- ► Full load characteristics: f(T_{su}, T_{out})
- Partial load performance

Water heaters:

$$\blacktriangleright \dot{Q}_n = f(\dot{m}_w)$$

Model coupling

$$\min \sum_{i} SystemCost_{i}$$

$$\sum_{u} (P_{u,i} \cdot Location_{u,n}) + \sum_{l} (Flow_{l,i} \cdot LineNode_{l,n})$$

$$= Demand_{DA,n,h} + \sum_{r} (StorageInput_{s,h} \cdot Location_{s,n}) - ShedLoad_{n,i}$$

$$-LostLoadMaxPower_{n,i} + LostLoadMinPower_{n,i}$$
(2)
$$+ 10^{-6} \cdot \Delta P_{i}$$

$$\Delta P = P_{flexible} - P_{base}$$

Difference between the actual building consumption and the baseline consumption

Modeling of the Belgian building stock

Database of building typologies validated with historical data.

Subset considered here: one building geometry and two insulation levels

- U = 0.458 [W /m²K] (75%)
- $U = 0.305 [W / m^2 K] (25\%)$

Heat demand aggregation:

- 4 space heating comfort profiles
- 5 domestic hot water consumptions profiles

Simulations

Base case study: Belgium in 2015

- 40 000 heat pumps
- 1 600 000 water heaters

Parametric analysis:

Heating system	Number of flexible units	Renewable capacity	Flexibility of the system
HP - WH	0 - 0.2 - 0.4 - 0.6 - 0.8 - 1M	R1 - R2 - R3	Non-flexible - Flexible

Simulation results: base case

	OC	Load	С	RGS	$arepsilon_{\mathbf{gl}}$	HCF
	[M€]	[TWh]	[GWh]	[%]	[%]	[%]
Base	712	87.0	95.5 (1.2%)	11.9		10,6
Heat pumps	710	87.0	85.7 (1.0%)	12.0	119	10,4
Water heaters	703	87.3	8.9 (0.1%)	12.1	75.1	6,7

More simulation results

Conclusions

- With 1M flexible devices:
 - Up to 35M€ of operational cost reduction
 - Up to 1TWh of curtailed power reduction (1MWh/device)
 - Benefits are higher when the flexibility need is high (more renewable)
 - Benefits are reduced when the system is more flexible
 - Heat pumps and water heaters provide the same heat storage
 - capacity
- Future improvements:
 - Adding cooling and/or more zones to the model
 - Include investments
 - Include uncertainty
 - EU-wide analysis
- All methods and models are released as open-source (Dispa-SET side): <u>https://joinup.ec.europa.eu/software/dispaset/</u>

Coupling a power system model to a building model to evaluate the flexibility potential of DSM at country level

Elodie Ciciriello, Emeline Georges, <u>Sylvain Quoilin</u>

www.jrc.ec.europa.eu

Joint Research Center (JRC) University of Liège (Belgium)

Serving society Stimulating innovation Supporting legislation

Dispa-SET 2.1 Inputs

Dispa-SET Configuration File

This is the standard configuration file for Dispa-SET. It defines the data sources for all the parameters and provides some indications regarding the structure of the data. This excel file must be provided when running the main dispa-set running script

	Standard simulation for 6 countries, with the MILP formulation					
Description						
Simulation directo	Relative Path	Simulations/simulation_test			This section defines the output of the pre-processing (which is the input of the DispaSet solver)	
Vrite excel	True/False	FALSE			The simulation environment is defined as a directory that contains all thre reuquired data and GAMS files	
Vrite GDX	True/False	TRUE			It is recommended to write the data in the 3 different formats (excel, gdx, pickle), but if one is not needed,	
Vrite Pickle	True/False	TRUE			it can be skipped.	
GAMS path	Path					
Start date	Date	1/1/2015			Date and time parameters of the simulation	
Stop date	Date	12/31/2015			Start and stop dates need to be within the provided data	
Horizon length	Number of days	3			Hour 0 of the day is defined as midnight in timezone UTC+1	
Look ahead	Number of days	1				
Chustasias	TruelEalan	TOUE			This and in a define a second she to film as the formulation of the same blam.	
Cinstering Cimulation tena	Liet	MUR			This sections derives parameters that indence the romalation or the problem.	
Simulation type Records coloulatio	List	Generic			and the solver (come constraints are removed when colving in LP)	
Allow Curtailment	True/False	TRUE			and the solver (some constraints are removed when solving in LP)	
	Inden alse	THOE .				
Demand	Relative Path	Database/Load_RealTime/##				
Outages	Relative Path				This section provides the paths to the raw data used to generate the Dispa-SET simulation template.	
Power plant data	Relative Path	Database/PowerPlants/##/2			The path is a relative path, the current directory being the one where DispaSET.py is executed.	
Renewables AF	Relative Path	Database/AvailabilityFactors				
Load Shedding	Relative Path		Default value	0.05	For datasets which have one file per country, replace the country code (2 characters) in the path by ##.	
NTC	Relative Path	Database/DayAheadNTC/1h/;			for example:	
Historical flows	Relative Path	Database/CrossBorderFlows			/data/Demand/##/2014/load.csv	
Scaled inflows	Relative Path	Database/HydroData/Scaled			will fetch one load.csv file per country, by replacing ## with FR, DE, NL, etc.	
Price of Nuclear	Relative Path		Default value	3		
Price of Black coa	Relative Path	Database/FuelPrices/Coal/2(Default value	11		
Price of Gas	Relative Path	Database/FuelPrices/Gas/20	Default value	20	All fuel prices are in EUR/MWh of primary energy (lower heating value)	
Price of Fuel-Oil	Relative Path	Database/FuelPrices/Oil/2018	Default value	35		
Price of Biomass	Relative Path	Database/FuelPrices/Biomas	Default value	37		
Price of CO2	Relative Path		Default value	7		
Reservoir Levels	Relative Path	Database/HydroData/Reserv				
Countries to consi	ider					
	AT	TRUE	IE	FALSE		
	BE	TRUE	IT	FALSE		
	BG	FALSE	LT	FALSE		
	CH	TRUE	LU	FALSE		
NUTCH de - COO	CY	FALSE	LV	FALSE		
NUTSTcodes (ISU	CZ	FALSE	MT	FALSE		
3166-1 standard) of the	DE	TRUE	NL	TRUE		
simulated countries.	DK	FALSE	NO	FALSE		

PL

PT

FALSE

FALSE

Input database:

- **RES** generation • profiles
- Power plants ٠
- Demand curves •
- Outages •
- Fuel prices ٠
- Lines capacities ٠
- Minimum reservoir • levels

From the same database different levels of model complexity are available:

- MILP •
- LP with all power ٠ plants
- LP one cluster per • technology
- LP presolve + MILP •

EE

FI

FALSE

EALSE

NB: all the selected

countries must be