

Techno-economic analysis of low-temperature district heating network implementation in the city of Nottingham, UK

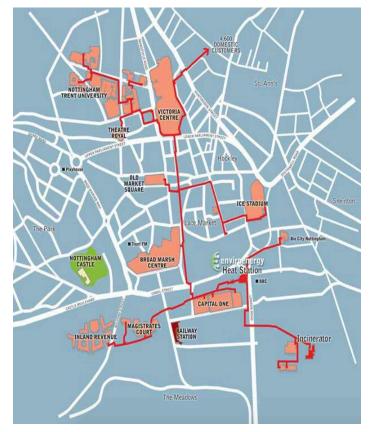
Soma Mohammadi

Research Fellow Nottingham Trent University

12 September 2017

Outline

- Background
- Demonstration Site
- Research Aims
- Scenarios
- Method
- Results
- Conclusion

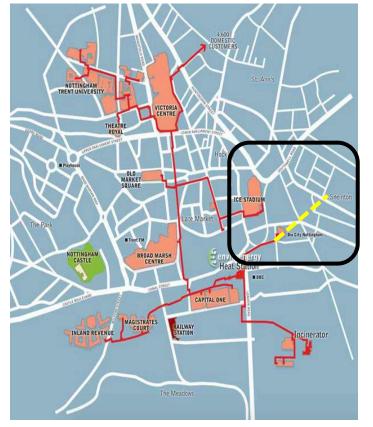

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

District Heating System in Nottingham

- 4900 homes and commercial buildings
- 68 km of insulated pipework
- Heat is coming from Eastcroft Energy From Waste incineration plant
- 144,000 MWh annual heat demand
- Network supply temperature is between 85-120°C
- Network return temperature is around 70°C

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

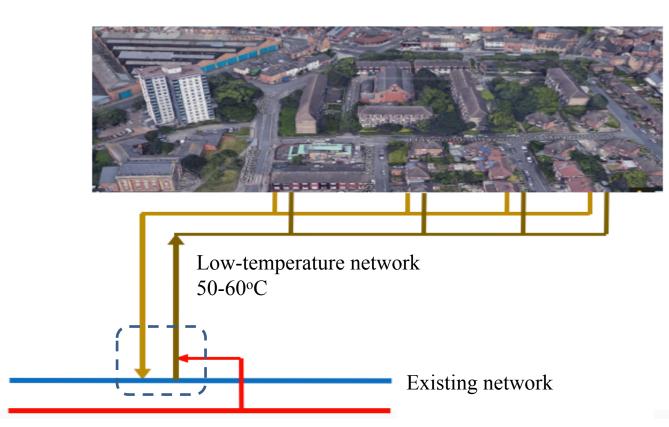
www.4dh.eu


eu www.reinvestproject.eu

District Heating intervention in Nottingham

Aburenter and collected at the second at the

High return temperature shows sufficient capacity for a LTDH intervention to the nearby areas rather than extending high temperature network.

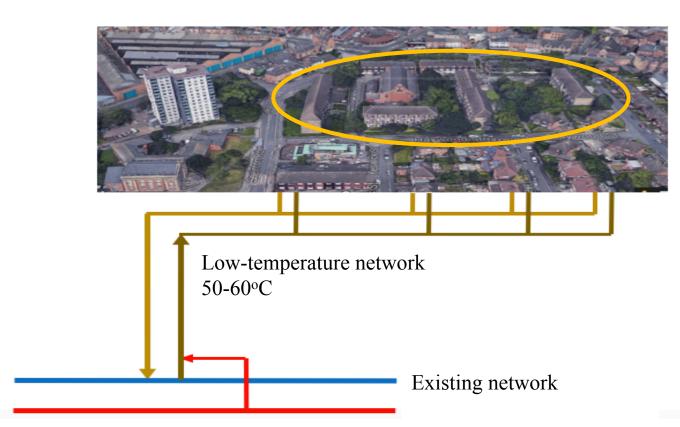


3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu

District Heating intervention in Nottingham

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017


RSITY

www.4dh.eu www.reinvestproject.eu

District Heating intervention in Nottingham

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu

h.eu www.reinvestproject.eu

ADH Vertex Roadmap Europe Aucadon heating and cooling strategy Investor Investor Investor

LTDH Demonstration Site

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 NTU

www.4dh.eu www.reinvestproject.eu

Buildings Retrofit

Morley Court

www.4dh.eu

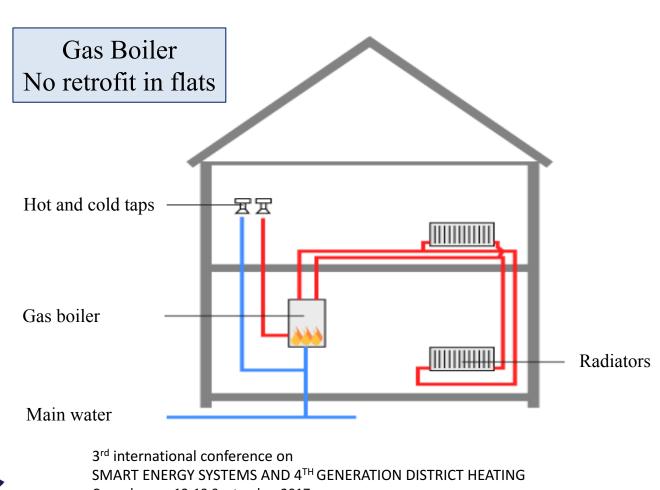
3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.reinvestproject.eu

www.heatroadmap.eu

Research Aim

A techno-economic analysis of low-temperature district heating intervention incorporated with buildings retrofit to evaluate its competiveness compare to existing heating systems in the demonstration site through studying 4 scenarios



3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.heatroadmap.eu

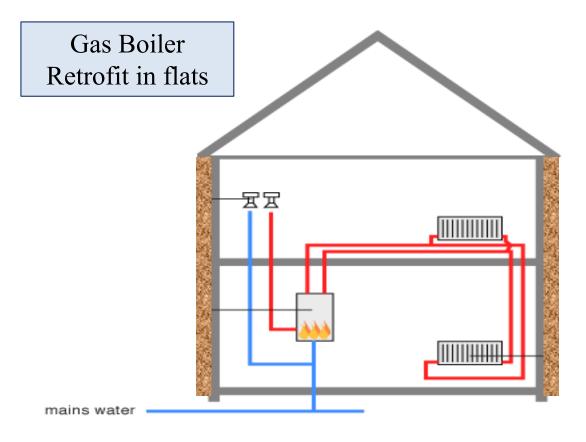
www.reinvestproject.eu

NTI

ADH ADH ADH Autonometropy Auto

Copenhagen, 12-13 September 2017

Scenario 1


AALBORG UNIVERSITY

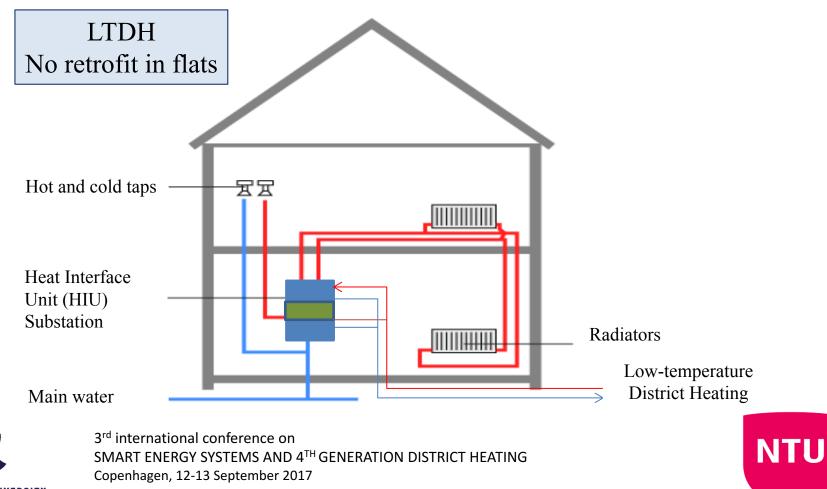
DENMARK

www.4dh.eu <u>www.reinvestproject.eu</u>

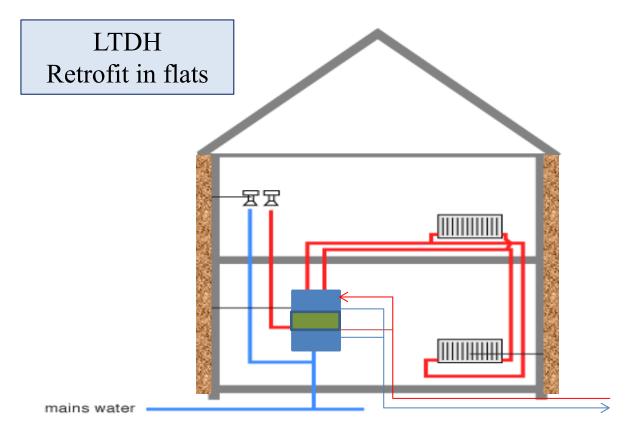
ADH ADH Meat Roadmap Europy Abcator hadre and cong strategy

Scenario 2

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017


www.4dh.eu

.eu www.reinvestproject.eu



AALBORG UNIVERSITY DENMARK

www.4dh.eu www.reinvestproject.eu

Scenario 4

www.4dh.eu

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.heatroadmap.eu

www.reinvestproject.eu

Building energy performance

Simulation of hourly heat demand profile

- Weather data: Nottingham 2016

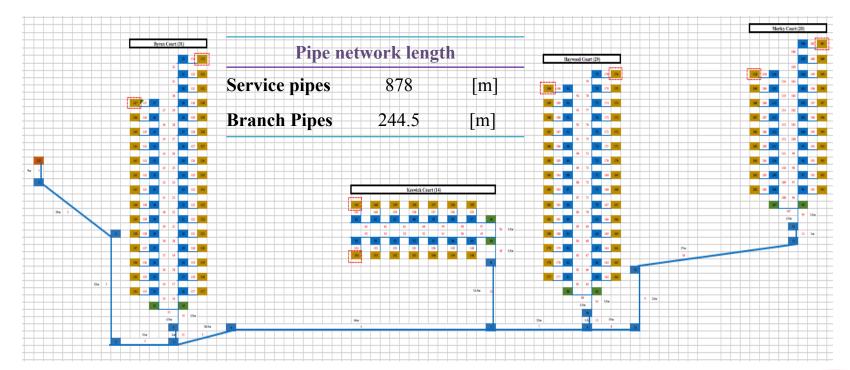
www.4dh.eu

- Peak heat load and hourly space heating demand profile: Design Builder Simulation Software

Deels le e d	Before Retrofit	After Retrofit	
Peak load	[kW/Flat]		
Byron Court	5.18	3.24	
Keswick Court	5.35	3.30	
Haywood Court	5.04	3.21	
Morley Court	5.35	3.30	

- Domestic hot water demand is modelled applying the BRE (Building Research Establishment) domestic energy model

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017



District Heating Network Hydraulic Design

Network layout (including both branch pipes and service pipes to the properties)

www.heatroadmap.eu

www.4dh.eu

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.reinvestproject.eu

District Heating Network Hydraulic Design

- The design supply temperature: 60°C
- The design return temperature: 30°C
- Max flow velocity: 2 m/s
- Max pressure drop: 8 bar
- Optimal maximum allowed pressure drop (for the longest route in the network)
- Simultaneity factor is applied for both SH and DHW demand

Pipe dimension range	Before Retrofit	After Retrofit
	DN75-DN20	DN63-DN20

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu

District Heating Network Simulation

LTDH network one year operation is simulated in a thermal-dynamic modelling tool^[*]based in hourly time interval.

Number of connected Consumers	94	[-]
Pipe types	PEXFlextra series 2	[-]
Pipe network length	1122 m	[m]
Number of bypasses	8	[-]
Bypass set point temperature	50	[°C]
Supply Temperature to the network	60	[°C]
Return temperature from consumers	30	[°C]
Soil temperature	8	[°C]

*A thermal-dynamic modelling tool developed in Matlab programming language.

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

LTDH implementation for non retrofitted and retrofitted buildings

Energy Performance		Before Retrofit	After Retrofit
Total Annual heat loss	[MWh]	87.90	86.14
Total annual consumers heat demand	[MWh]	1372.01	810.76
Total annual heat production	[MWh]	1460.68	897.81
Share of heat loss	[%]	6.02	9.59

www.4dh.eu

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.heatroadmap.eu

www.reinvestproject.eu

LTDH implementation for non retrofitted and retrofitted buildings

Energy Performance		Before Retrofit	After Retrofit
Total Annual heat loss	[MWh]	87.90	86.14
Total annual consumers heat demand	[MWh]	1372.01	810.76
Total annual heat production	[MWh]	1460.68	897.81
Share of heat loss	[%]	6.02	9.59

Economic		Before Retrofit	After Retrofit	
Retrofit cost	[M€]	0	0.386	
Pipe network installation cost	[M€]	0.967	0.954	
The network annual operating cost	[M€/year]	0.111	0.076	
The DH price is 61.9 [ϵ /MWh]	Including annual heat cost and network annual maintenance cost			

www.heatroadmap.eu

www.4dh.eu

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

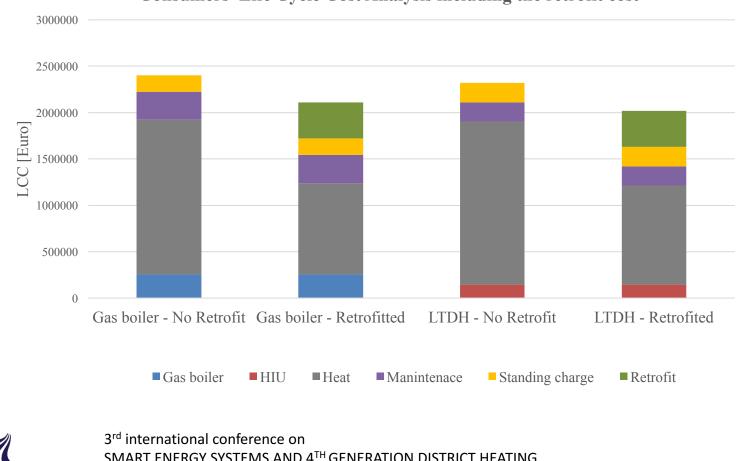
www.reinvestproject.eu

Economic analysis of the four defined scenarios from the consumers perspective

The DH price is 61.9 [€/MWh] and gas price is 53.3 [€/MWh]

Scenarios		Gas Boiler No retrofit	Gas boiler Retrofitted	LTDH No retrofit	LTDH Retrofitted
Gas boiler capital cost	[€]	255434	255434	0.00	0.00
HIU Capital cost & meters	[€]	0.00	0.00	143043	143043
Heat consumption	[€/year]	83993	49634	88882	54054
Maintenance cost	[€/year]	15326	15326	10217	10217
Standing Charge	[€/year]	8965	8965	10778	10778
Life Cycle Cost	[M€]	2.66	1.98	2.46	1.77
Life Cycle Cost + Retrofit cost	[M€]	2.66	2.36	2.46	2.16

Life cycle cost analysis: 30 years life cycleInterest rate = 3% Inflation rate = 6 %



www.4dh.eu

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.heatroadmap.eu

www.reinvestproject.eu

Consumers' Life Cycle Cost Analysis including the retrofit cost

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

Conclusion

- Low temperature district heating together with implementing some retrofit measures in the building is the best scenario from economic perspective.
- It is vital to include all the associated costs when evaluating the district heating interventions against its rivals.
- There are different district heating schemes in UK with different prices varies between 43-163 [€/MWh], therefore the feasibility of this kind of intervention needs to be studied for different schemes.

Next Steps

- Looking into the cost of the DH production from the heat providers point of view
- Research the replication of this intervention for other areas in Nottingham

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu

Thank You

Contact:

Soma.mohammadi@ntu.ac.uk

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017 NTU

www.4dh.eu ww

www.reinvestproject.eu