Primary energy benefits of cost-effective energy renovation of a district heated building under different energy supply systems

Ambrose Dodoo, Leif Gustavsson and Nguyen Le Truong Sustainable Built Environment Research Group http://lnu.se/research-groups/sustainable-built-environment/researchers?l=en

Linnaeus University

Copenhagen, 12-13th September 2017

We analysed implications of energy savings in a district heated building

- Integrating economic optimization with energy balance and energy system analysis
- Evaluating primary energy changes due to different energy efficiency measures, considering:
 - different location for the building
 - three different district heating systems with varied scale and technical setup as well as tariffs
 - hourly variation of final energy savings based on real climate data for 2013
 - hourly operation of district heat production units based on:
 - o real operation for 2013
 - o renewable-based DHS

Linnaus University

Analysed district heated building

- Concrete building built in 1972
- Located in Ronneby, South of Sweden
- Three-story above ground and a basement
- 27 apartments
- 2000m² total heated living area
- 5400 m³ ventilated volume
- District heated

The building is good conditions, located in popular housing area, with a remaining lifetime of at least 50 years

Linnaeus University

Building thermal characteristics currently Building elements Components U-value (W/m²K) Windows Doors 3.0 Attic floor (initial state) 160mm concrete + 120mm rock wool 0.285 Attic floor (current state) 160mm concrete + 350mm rock wool 0.082 Slab of the first floor 190mm concrete + 70mm wood-fibre wool panel 0.823 East / West façade: Brick 120mm brick + 20mm air gap + 30mm polystyrene + 70mm rock 0.337 façade wool + 13mm gypsum plaster South/North façade: 120mm brick + 20mm air gap + 100mm rock wool + 150mm 0.331 Brick façade concrete + 13mm gypsum panel Wooden cladding 10mm wooden cladding + 20mm polystyrene + 100mm rock wool + 0.301 (east/west) Basement walls: 15mm cement plaster + 50mm Leca cement bond + 1.44 East/West Basement walls: 15mm cement plaster + 50mm Leca cement bond + 1.33 North/South 250mm concrete Slab on ground 230mm concrete 0.26 **Linnaus University**

Calculations of final energy savings

Hour-by-hour energy balance modeling with VIP+ for the whole building before and after applying energy efficiency measures

Key data and assumptions

Parameter	Data / description	Remark
Weather data	2013	Meteonorm
Indoor temperature in	22 ºC	Based on measurements. Reduced to 21ºC
apartments*		when new improved windows are applied
Ventilation rate	0.1 and 0.35 l /s m ²	Building code (BBR 2012)
Ventilation system	Mechanical exhaust	
Airtightness at 50 Pa	0.8 l /m ² s	Assumed based on construction data

^{*}Based on measurements

Ref: Dodoo, A., Tettey U.Y.A. and L. Gustavsson, (2017). On input parameters, methods and assumptions for energy balance and retrofit analyses for residential buildings. Energy and Buildings. 137. 76-89.

Dodoo, A., Tettey U.Y.A. and L. Gustavsson, (2017). Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings. Energy, 120, 1:718-730

Linnaus University

Energy renovation measures analysed

Energy renovation measure	Range
Extra insulation to:	
Attic	50 to 500 mm mineral wool insulation
Basement walls	50 to 350 mm styrofoam insulation panels
Exterior walls	45 to 510 mm mineral wool insulation
New improved windows	1.5 to 0.7 W/m ² K U-value
New improved taps	Faucets based on best available technologies
Efficient appliances and lighting	Best available technologies
Ventilation heat recovery system	Central and semi-centralized units

Linnaeus University

Total- and marginal-based optimisation of energy efficiency renovation measures and packages

Net present economic value of (NPV) of energy savings are compared to estimated investment cost

Two step analysis of measures:

- 1. Single measures
- 2. Package of measures applied in order of cost efficiency

Linnæus University

Scenario	BAU	Intermediate	Sustainability
Helsingborg	Efficient taps	Efficient taps	Efficient taps
	Efficient lighting & freezer	Efficient appliances	Efficient appliances
	100 mm basement insul.	150 mm basement insul.	150 mm basement insul.
	1.2 W/ m ² K windows	1.2 W/ m ² K windows	1.1 W/ m ² K windows
		400 mm attic insulation	400 mm attic insulation
			VHR system (centralised)
Växjö	Efficient taps	Efficient taps	Efficient taps
	Efficient lighting & freezer	Efficient appliances	Efficient appliances
	50 mm basement insul.	250 mm basement insul.	250 mm basement insul.
	1.2 W/ m ² K windows	1.2 W/ m ² K windows	0.9 W/ m ² K windows
			400 mm attic insulation
			VHR system (centralised)
Ronneby	Efficient taps	Efficient taps	Efficient taps
	Efficient lighting & freezer	Efficient lighting & freezer	Efficient appliances
	50 mm basement insul.	150 mm basement insul.	150 mm basement insul.
	1.2 W/ m ² K windows	1.2 W/ m ² K windows	1.1 W/ m ² K windows
			500 mm attic insulation
			VHR system (centralised)

Context/ location	Scenario	Heat savings (MWh/yr)	Electricity savings (MWh/yr)	Total investment cost (k€)	NPV of savings [energy & water] (k€)	NPV/ invest costs
Helsingborg	BAU	97.7 (36%)	22.7 (34%)	134.2	278.8	2.1
	Intermediate	103.4 (38%)	30.2 (46%)	180.8	474.1	2.6
	Sustainability	143.3 (53%)	28 (43%)	331.7	1118.3	3.4
Växjö	BAU	101.7 (34%)	22.7 (34%)	128.3	313.5	2.4
	Intermediate	107.8 (36%)	30.2 (46%)	172.3	473.7	2.7
	Sustainability	161.1 (53%)	28 (43%)	384.0	1129.6	2.9
Ronneby	BAU	95.5 (34%)	22.7 (34%)	128.3	306.3	2.4
	Intermediate	99.4 (36%)	22.7 (34%)	137.7	484.3	3.5
	Sustainability	140.7 (51%)	28 (43%)	335.7	1106.5	3.3

Conclusions I

- Large cost-effective final energy savings are achieved for the building with the analyzed measures
 - Annual final heat savings of 97.7-161.7 MWh (34-51%)
 - Annual end-use electricity savings of 22.7- 30.2 MWh (34-46%)
 - Biggest energy savings is achieved with sustainability scenario
- Primary energy savings of the measures vary, depending on:
 - Characteristics of energy supply systems
 - Type of energy efficiency measure

Linnaeus University

Conclusions II

- Annual total primary energy savings vary from 116.4 247.6
 MWh, depending on supply systems
- Primary energy savings are lower with cost-optimally designed renewable-based energy supply compared to the existing supply system
- Evaluation of energy efficiency measures in district-heated buildings requires a systems perspective

Linnæus University

Thank you!

Linnaeus University

