

Renovation towards a smart district heating in Valladolid

Authors:

Alfonso Gordaliza Pastor Javier Martín Sanz Enrique Martín Guillem José Ramón Martín-Sanz García Carmen Muñoz Rodríguez

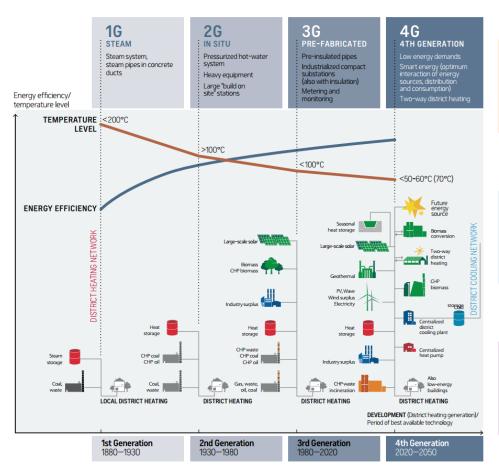
3RD INTERNATIONAL CONFERENCE ON SMADT ENERGY SYSTEMS AND

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

Renovation towards a smarter DH in Valladolid

- . Introduction.
- Case study: FASA DH
- Transition towards a 4GDH.
- 。Conclusions.

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING



Introduction

3RD INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

Historical development of DH systems

Europe

12% population DH-connected **5,000** big DHC networks **25%** from RES

Northern Europe

Copenhagen, Helsinki, Warsaw, Riga...

iii 90% citizens connected to DH!!!

Future of district energy

Low temperature district heating Smart energy management Two-way networks (prosumers)

Source: Aalborg University and Danfoss District Energy, 2014

Source: ADHAC (District Heating and Cooling Companies Association in Spain)

Heating and Cooling networks in Spain

306 networks
1,219 MW
550 km
4,030 buildings
< 1% people

74% RES 97% biomass ↓ 180,000 TnCO₂ 90% heating 23% residential 48% private

Source: ADHAC (District Heating and Cooling Companies Association in Spain)

VEOLIA: Global figures in 2016

24,390 M€

163,226 employees

WATER

100

million people supplied with drinking water

61

million people connected to wastewater systems

4.052

water production plants managed

2,928

wastewater treatment plants operated

WASTE

40

million people provided with collection services on behalf of municipalities

45

million metric tons of treated waste recovered into energy

764,477

business customers

591

waste treatment facilities operated

ENERGY

44

million MWh produced

37,339

thermal installations managed

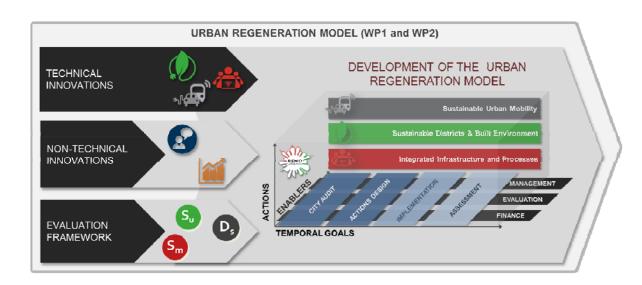
2.086

ndustrial sites manage

551

heating and cooling networks operated

VEOLIA in Spain: Main activities



REMOURBAN project: General overview

REMOURBAN: REgeneration MOdel for accelerating the smart URBAN transformation

REMOURBAN project: Demo cases

REMOURBAN: REgeneration MOdel for accelerating the smart URBAN transformation

KEY FACTS

Start Date: 1st Jan 2015

Duration: 60 months

Total Budget: 23,790,405 € **EC Funding:** 21,541,949 €

22 partners from 7 countries

3 Lighthouse and 2 Follower cities

Case study: FASA DH

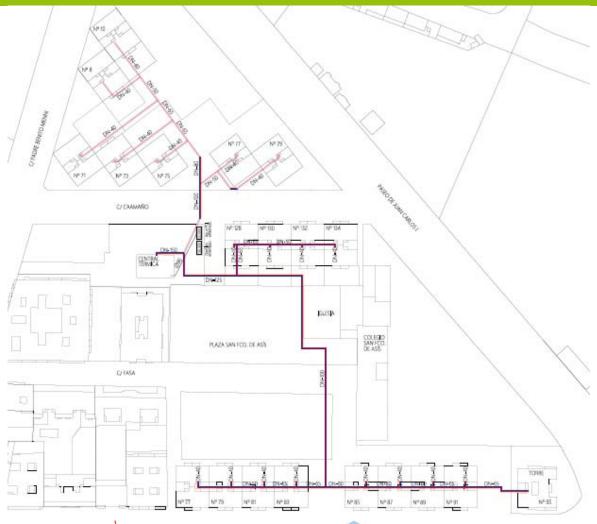
3RD INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

Description and original situation of FASA DH

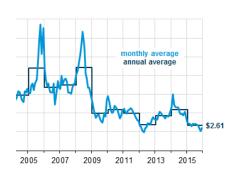
FASA district heating:

- Built in 60s –70s
- **Private** Community of **Owners**
- 20 residential buildings
- **398** private apartments
- 24,700 m² heated
- 2G-DH system
- Fossil fuels (oil and gas)
- Consumption: 4.0 GWh/yr
- Power installed: **7.4** MW

Panoramic view of FASA DH



Original network layout of FASA DH



Community of Owners needs in FASA DH

- Old equipment and bad performance of the energy facilities.
- Inefficient management of the district heating system.
- Network with continuous breakages and leaks => High reparation costs.
- Expensive energy bill and low-comfort conditions inside the homes.
- Instability of the energy price due to external conditions.

Transition towards a 4GDH

3RD INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

Objectives for FASA DH renovation

- Reduction of the buildings' energy demand by a 50%.
- Improvement of the comfort level inside the dwellings.
- Decrease of the operation & maintenance costs.
- Enhancement of the overall energy performance.
- Reduction of the CO₂ emissions.
- Increase the share of renewables beyond 80%.
- **Residents decision-making** at district, building and home level.

Energy efficiency measures in FASA DH

- Buildings external insulation.
- 2. Overall **energy management**: supply, operation and maintenance.
- 3. High-efficiency biomass boilers: 1.0 MW.
- 4. High self-sufficiency biomass **buried silo**: 205 m³.
- 5. Variable flow pumping system.
- 6. **BIPV** in the tower façade: 24 kWp.
- New pre-insulated pipeline network + Leak detection system.
- 8. Optimized control strategies.
- Smart energy metering and monitoring.
- 10. **HEMS**: thermostatic valve, smart thermostat and heat cost allocators.

Reduction on the buildings' energy demand

External insulation solution in all the buildings' façades

IPR: José Antonio González Barjas (Architect)

Optimized energy production

- 2 new **biomass** boilers: 1.0 MW
- Back-up gas boiler: 3.7 MW
- **Heat storage**: Water buffer tanks
- Variable flow pumping system
- New valves, pipes, accessory...
- Remote control system

Higher energy self-sufficiency

Biomass wood chips:

Biomass class: P16B (G30 – G50)

Density: 325 kg/m³

Moisture (W): 15 – 40 %

Calorific value: 3.5 kWh/kg

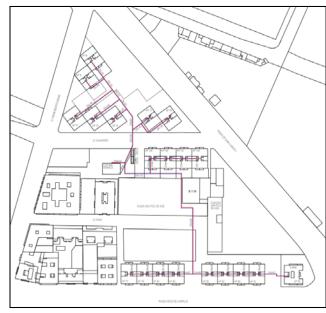
Buried silo:

Dimensions: 10.25m x 4m x 5m

Useful Volume: 205 m³

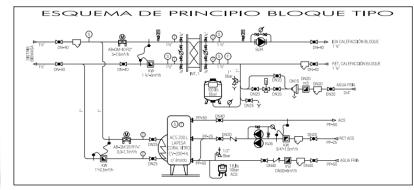
Biomass storage: 66 tons

Capacity (average): 65 days


Improved energy distribution

New distribution network:

- Energy carrier: Hot water (85 / 65 °C)
- Pre-insulated pipelines
- Same layout
- Leak detection systems



New high-performance substations:

- Heat plate exchanger
- Pump
- DHW tank
- Smart energy meters

Better control & Higher comfort

Home Energy Management System:
 Individual thermostatic valve at dwelling level
 Smart thermostat
 Heat cost allocators

Comfort sensors:
 Indoor ambient temperature
 Indoor relative humidity

Transition to a smarter district heating (1/2)

Before renovation

"2G district heating"
Old and inefficient equipment
Lack of insulation in the buildings
Based on fossil fuels (gas and oil)
Pressurized superheated water
(T = 120/100 °C)
Distribution heat losses and leaks
Manual control
Production not adapted to demand
Not metering (energy bills in paper)
Additional costs in O&M

After renovation

"3G-4G district heating"

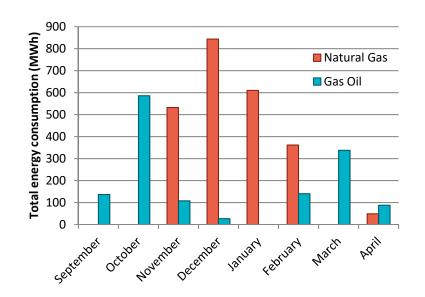
New and high-performance equipment
External insulation in the buildings

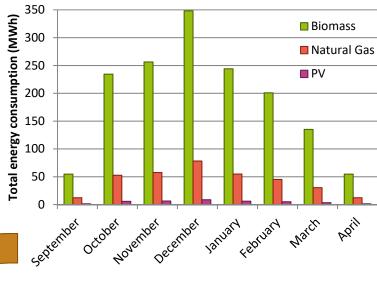
Based on renewables (biomass and PV)

Hot water

(T = 85/65°C)

Pre-insulated pipes and leaks detection
Automatic and remote control
Production adapted to demand
Smart metering and monitoring
Overall energy management





Transition to a smarter district heating (2/2)

Before: 3.80 GWh/a

After: 1.91 GWh/a

Conclusions

3RD INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

Key figures in FASA district heating

- Expected energy savings: 50%
- Expected CO₂ emissions reduction: 1,000 tCO₂/yr
- Thermal power: 1.0 MW (biomass-main) + 3.7 MW (gas-backup)
- Electric power : 24 kW (BIPV)
- Total heated area: 24,700 m²
- Total investment for retrofitting: 4.0 M€ (162 € / m²)
- Contract: Long-term ESCO model (18 yr)
- Financing scheme: EC + Municipality + ESCO + Building company

Barriers in FASA district heating

Political

Spanish **legislation** against electrical **self-consumption**.

Economic

High **upfront costs** for district energy retrofitting. Need of a **long-term contract** > 15 yr to be feasible (financial risk).

Social

Private multi-property ownership (agreements, decision-making...). Citizens' **distrust companies** (energy and building).

Technical

General **lack of knowledge** about energy & environmental projects.

Success factors in FASA district heating

Political

The use of both regional and international fuels enables a more stable energy price and security of supply in the long term.

Economic

European Commission and Municipality financing support made the renovation feasible without raising the energy bills to the Communities of Owners.

Social

Engagement campaigns with the owners foster their confidence in this kind of projects.

Technical

Companies' expertise to improve the owners' confidence. **M&V** to assure the energy savings increase transparency and trust.

Thank you very much for your attention

Contact:

Alfonso Gordaliza Pastor

Energy efficiency engineer

alfonso.gordaliza@veolia.com

3 RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING