

A study on the thermal performance of low temperature district heating networks with decentralized renewable energy feed-in

Danhong Wang, Kristina Orehounig, Jan Carmeliet Chair of Building Physics, ETH Zurich Urban Energy Systems Laboratory, EMPA danhong.wang@arch.ethz.ch

Introduction

- Investigate on the potential of renewable integration into district heating networks
- Develop a proper approach for network representation, able to evaluate network performances for difference configurations and find the optimal system design

Map of the urban district with mixed building types and ages ^[1] [1] G. Mavromatidis, Model-based Design Of Distributed Urban Energy Systems Under Uncertainty, PhD thesis, ETH Zurich, 2017

District Heating System : Components

- Centralized Heat Production
- Distribution Networks
- Consumers + Decentralized Renewable Source

Modelling Framework

Modelling Framework

> A simulation model combined with network design

Network Model

> Multi-time step steady-state thermal hydraulic model

Network Model

Multi-time step steady-state thermal hydraulic model

Network Model

Multi-time step steady-state thermal hydraulic model

- **Network Structure** Hydraulic Model Mass Conservation •Head Loss Calculation **Thermal Model** • Pipe loss • Flow Mixing
- Thermal loss along pipe:

$$T_{out} = T_g + (T_{in} - T_g) \cdot e^{-\frac{k_{ij} \cdot L_{ij}}{\dot{m}_{ij} \cdot cp}}$$

• Mixing of Flow:

$$\dot{m}_{mix}T_{mix} = \sum_{i}^{n} \dot{m}_{i}T_{i}$$

- T_{out} outlet temperature
- T_{in} inlet temperature
- T_g ground temperature T_g
- k_{ij} pipe thermal transfer coefficient
- \dot{m}_{ii} pipe mass flowrate

Source and Sink Model

Case Study

Case study: artificial district

Case study: artificial district

Case study: artificial district

Some simulation results

Case study: Results

Hourly Temperature and Mass flow Rate Distribution

Winter Day

Summer Day

Remark :

- +1: flow direction aligned with arrow direction
- 1: flow direction opposite with arrow direction
- 0: no mass flow rate

Case study: Results

Hourly Temperature and Mass flow Rate Distribution

Winter Day

Summer Day

Remark :

- +1: flow direction aligned with arrow direction
- 1: flow direction opposite with arrow direction
- 0: no mass flow rate

Case study: Results

Temperature delivered at each consumer on a typical winter and a summer day

- Temperature variation is rather small in winter with the current operation strategies
- In summer, temperature drop is rather significant. Sometimes not hot enough for domestic hot water supply

Parametric Study

Parametric Study

Linear heating density (LHD)

Parametric Study

Conclusion:

- Focus on the decentralized solar energy integration to networks and evaluate thermal performances
- High potential for seasonal storage in summer
- Demonstrates some operational problem in summer with only DHW demand
- Thermal loss is almost linear correlated with distribution pipe lengths, while rather less sensitive to the total load
- Thermal performance with respect to different temperature schemes is less significant for shorter pipes.

Outlook:

- Perform exergy analysis
- Apply the methodology for different system configuration
- Incorporate cost data for economic analysis and cost effective design purpose
- Combine the network representation with optimization methods for system optimization
- Incorporate with short and long term storage technologies

Thanks for your attention

In cooperation with the CTI

Energy funding programme Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Danhong Wang, Kristina Orehounig, Jan Carmeliet Chair of Building Physics, ETH Zurich Urban Energy Systems Laboratory, EMPA danhong.wang@arch.ethz.ch