Implication of low temperature district heating on network investment costs, primary energy savings and cost benefits

Ambrose Dodoo, Leif Gustavsson and Nguyen Le Truong
Linnaeus University, Sweden

Linnéuniversitetet 🚟

This presentation is based on an on-going project on:

Low temperature district heating and new energy efficient building blocks

Project partners include Växjöbostäder, Växjö Energi AB and Växjö Municipality

The presented results are preliminary

Implication of low temperature district heating on network investment costs, primary energy savings and cost benefits

- We consider three types of exploitation of a development area in Växjö, in southern Sweden
 - Low exploitation
 - Medium exploitation
 - High exploitation
- We consider two different energy performance of buildings
 - Swedish building code (BBR 2015)
 - Passive house criteria
- We consider three temperature levels for district heating network
 - 80/40°C
 - □ 65/30°C
 - □ 50/20°C

Project site in southwest of Växjö Växjö is a city of about 65 000 inhabitants District heating system (DHS) 10 185 MW_{peak} and ~ 630 GWh_{heal}/year 10 20 20 CHP plants and several boilers Measured temperature in DH-network in 2013 Measured temperature in DH-network in 2013 Measured temperature in DH-network in 2013 Measured temperature in DH-network in 2013

Project site

- A new developed area in Torparängen, Växiö
- Planning of ≈ 250 apartments/houses,
 - 125 apartments
 - 125 row houses and small houses
- 4, 6, 8 or 10 story-buildings
- Different building frames
 - Concrete
 - Wood
- · Different heat supply options
 - District heating
 - Electric heat pumps in each building

3D models of different exploitation alternatives

Medium-exploitation of apartment buildings and townhouses, 23 540 m² heated floor area

High-exploitation of apartment buildings, 29 350 m² heated floor area

Buildings heat demand

- □ Simulated based on current Swedish building code (BBR) and passive house criteria (Passive)
- Used for the design and calculation of district heat options
 - For apartment buildings:

Building type	Space heating load (kW / building)	
	BBR	Passive
o 6 storeys, 24 apartments	54.5	27.8

· For row houses:

House type	Space heating load (kW / house)	
	BBR	Passive
o 2 stories, 6-13 houses/row, 140 m²/house	4.34-6.20	1.80-2.42

Primary energy use for local network losses

A biomass-based DHS using the heat load duration curve of Växjö is used for calculation

System:

- o ~ 185 *MW*_{peak}
- o ~ 630 GWh_{heat}/year

□ The changed primary energy use is considered as marginal

District heat production costs of annual local network losses Using biomass-based district heating system for all the scenarios

 Including capacity cost, fixed and variable O&M costs of each district heat production unit

Based on marginal cost calculation

Cost implication of reduced supply/return temperatures in local network with 80/40°C as baseline

- The difference in annual district heat production cost relative to the baseline is calculated.
- The net present value of the cost difference is calculated assuming different real discount rates and lifetimes
 - 6% and 30 years
 - 3% and 40 years
- The net present value of the cost difference is compared to difference in investment costs

Not so far considered in the analysis

District heat production benefits of operating CHP-plants at lower district heating temperatures

Reduced distribution heat losses in the whole distribution system due to reduced supply/return temperatures

Implications of investment cost for internal distribution of heat in buildings due to different supply/return temperatures

