

Scenario analysis of the renewable district heating system in Ozalj, a small city in Croatia

<u>Borna Doračić*</u>¹, Tin Pušić¹, Tomislav Novosel¹, Tomislav Pukšec¹, Neven Duić¹, Linn Laurberg Jensen²

¹ Faculty of Mechanical Engineering and Naval Architecture, Department of Energy, Power Engineering and Environment, University of Zagreb, Ivana Lučića 5, 10 000 Zagreb, +385 1 6168242

² PlanEnergi, Vestergade 48H, DK - 8000 Aarhus

e-mail: <u>borna.doracic@fsb.hr</u>

CONTENTS

- Introduction to CoolHeating project
- Most relevant output of the project so far
- Heat demand mapping for the city of Ozalj
- Scenario analysis
- Conclusions

Introduction to CoolHeating project

Project name → Market uptake of small modular renewable district heating and cooling grids for communities

Start of the project \rightarrow 01.01.2016.

Duration → 36 months

Call → H2020-LCE-2015-3

Topic \rightarrow *LCE-04-2015 Market uptake of existing and emerging renewable electricity, heating and cooling technologies*

Budget → 1 644 340 €

- The main aim of the project is giving support to implementation of small modular renewable district heating and cooling grids for communities in South-Eastern Europe
- Project partners from countries, which implemented a large number of innovative district heating systems will contribute with their knowledge and experience on implementation of these systems
- Further activities include measures for involving citizens of target communities into project activities, as well as capacity building for project development and further application for EU funds
- Overall, the project will result in policy recommendations; improved regulatory frameworks; and application of business models and innovative financing that way preparing the market for the uptake of such systems.

CooHeating

Most relevant outputs of the project so far

Reports:

- Best practice examples in Germany, Austria, Denmark and the target countries
- Analysis of legal framework for district heating systems in target countries
- Handbook on small modular renewable district heating and cooling systems
- Guideline for initiators of small renewable district heating systems
- Guidelines on improved business models and financing schemes

Survey:

 The main idea is to gather energy consumption data of the citizens, as well as their ideas, suggestions and doubts about district heating

Opinion towards connecting to a district heating system

Reason why people would not want to connect to a DH system

Study tours to best practice examples in Denmark and Austria

Heat demand mapping for the city of Ozalj

- Method is divided into four steps
- Creating a matrix that contains information on total gross area and locations of buildings from an online building census
- 2. Gathering data on the number of floors in every building
- 3. Classification of the buildings into 8 categories
- 4. Calculating total heat demand by multiplying total gross areas of buildings with specific heat demand of different types of buildings

Category	Specific heat demand	
	(kWh/m²)	
Old house	177.75	
New house	112.5	
House without the facade	262.5	
Apartment building	161.25	
Office building	135	
Public building	270	
Historic building	78.75	
Industry	110	

CooHeating

Scenario analysis

	Version 1	Version 2
DH network length (m)	8,798.33	16,586.17
Household area connected to DH (m ²)	124,786.91	201,421.81
Heat demand of the connected households (MWh)	17,371.82	28,820.36
Needed capacity for the production facility (MW)	11.29	18.9
Internal rate of return (%)	9.51	9.93
Net present value (€)	2,013,852.24	3.354.797,71
Simple payback period (years)	7.75	7.58

Conclusions

- High RES potential for district heating in south-east European countries
- Significant CO₂ reduction possibilities
- Economical feasibility in smaller rural areas

Thank you for your attention!

CoolHeating website: www.coolheating.eu

This project has received funding from the *European Union's Horizon 2020* research and innovation programme under grant agreement No 691679