

Barriers and Opportunities for Large-Scale Heat Pumps in Austrian District Heating and Cooling Networks

Roman Geyer

4th International Conference on Smart Energy Systems and 4th Generation District Heating Aalborg, 13-14 November 2018 #SES4DH2018

CONTENT BASED ON IEA HPT ANNEX 47

Presentation overview

- District heating (DH) in Austria at a glance
- Motivation for heat pump (HP) integration
- Barriers / challenges
- Possible solutions and opportunities
- Success factors

13.11.2018

DH IN AUSTRIA AT A GLANCE

26%

of residential heat demand covered by DH

24 TWh

DH generation in 2017 (14 TWh from CHP or 60%)

up to

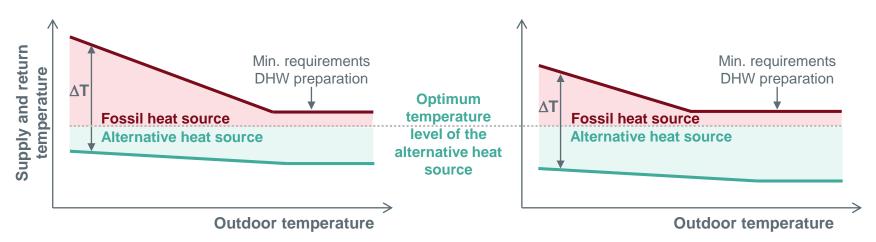
52 TWh

total economic potential for DH (in best case, depending on scenario, e.g. energy prices, connection rate, etc.)

5,500 km

DH network length (42 km/a growth in next 10 years)

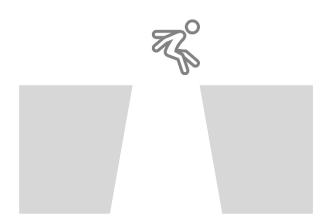
54%


based on biomass and combustible waste (gas 36%, oil 6%, coal 4%)

MOTIVATION FOR HP INTEGRATION

The motivation to use HPs in DHC can be divided into the following areas:

- usage / capture of low temperature alternative heat sources
- enabler for other alternative energy sources
- link to electricity grid (balance of energy domains)
- reduction of the network temperatures
- increasing transport capacities by using the return line as a source



BARRIERS / CHALLENGES

Social-, economical- and technical barriers

6

BARRIERS

Shifting policy (long-term strategies needed) System change

Lack of confidence

Social

Policy

(technology, distribution system, ...)

(Funding other technologies but not HPs)

Lack of knowledge

(Integration, operation, ...)

Fossil fuel subsidies

(do not help ...)

Spatial planning

(usually ignorant to available heat sources)

Availability of technical requirements

Technical

Availability of HP-products

Energy prices

(gas, el., ...)

Economical

Availability of heat sources

(location, temperature, ...)

Investment costs

(HP in combination with DHC)

CHALLENGES

Customers

- Prosumer
- Citizens' power stations
- Service orientation and comfort (cooling requirements)
- New business and tariff models
- Security supply

• ...

State Region City Energy supplier

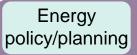
Society & Politics

- Demographic developments
- Decarbonization / COP21
- Energy efficiency directive
- ..

Market

- High volatility, pooling of flexibilities/ balancing energy markets
- Copper plate or electric fences?
 (e.g. electricity price zone DE/AT)
- Energy price developments (oil, gas, ...)

- Technology & Innovation
- Digitization & Smart Home
- Energy efficiency & storage
- Electric mobility
- ...



POSSIBLE SOLUTIONS AND OPPORTUNITIES

Holistic heat supply strategies
Sector coupling/ hybrid energy systems
Business models

POSSIBLE SOLUTIONS

Reduction of emissions (air pollution, ...)

Local involvement

Social

Phase-out of fossil fuel

(reduction of CO₂-emissions)

System thinking

(closing energy cycles)

... AND OPPORTUNITIES

Education & Instruction

(technology related)

Circular energy economy

(proper system design)

Guidelines / Descriptions

(how to use ... / install HPs)

Fair pricing

(internalization)

Capacity expansion

Heating & Cooling

(both at same time)

Technical

Standardization

(R&D, solutions, interface)

Higher efficiency

(CHP, network, ...)

Reduction of losses

(generation, network, ...)

Economical

Flexibility

(balancing markets)

HOLISTIC HEAT SUPPLY STRATEGIES

Assessment of boundary conditions

1

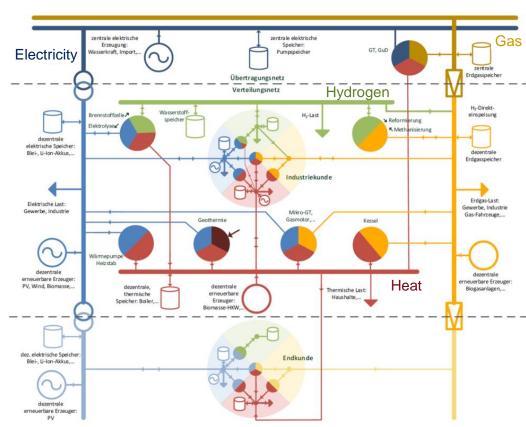
Development of technology scenarios

2

Decision on the final concept

3

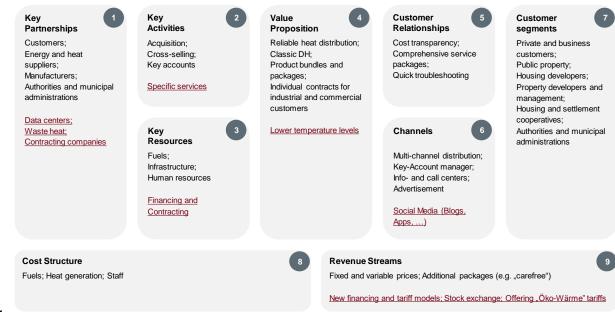
- a) Decision on the evaluation criteria and the time horizon
- b) Status-Quo evaluation and scenarios (heat demand...)
- c) Analyses of regulations, subsidies, political targets, energy market (especially electricity price forecast)
- a) Characteristics of relevant technologies/potential of alternative heat sources
- b) Assessment of levelized heat generation costs,
- c) Development of heat supply portfolio
- d) Sensitivity analyses


- a) Selection of different variants (supply/network)
- b) SWOT-Analysis
- c) Multi-Criteria evaluation
- d) Transition strategy & action plan for the selected variant

SECTOR COUPLING / HYBRID ENERGY SYSTEMS

The use of HPs in times of favorable electricity prices can increase the:

- share of renewable energy sources and the security of supply in the heating grid
- technical capacity and own consumption in areas with a high degree of local electricity production from PV and wind energy
- services for power grid / energy markets


Source: W. H. M. Gawlik, M. Heimberger, R.-R. Schmidt, D. Basciotti, W. Böhme, G. Bachmann, R. Puntigam, K. Haider und E. Arenholz, "OPEN HEAT GRID - Offene Wärmenetze in urbanen Hybridsystemen," Bundesministerium für Verkehr, Innovation und Technologie, Wien, 2016.

BUSINESS MODELS

Innovative approaches are needed

- Digitization
- Regionality
- Fuel substitution
- Specific services
- System optimization
- Flexible tariff models
- Holistic system concept
- Financing and contracting
- Waste heat / cooling energy
- Set up "heat stock exchange"
- Reduction of system temperatures

SUCCESS FACTORS

WHAT DO WE NEED?

- Strong partners
 - companies, institutes, start-ups, etc.
- Projects
 - demo, best practice, experiences, motivation
- · Learning by doing
 - requires pioneers who are willing to "pay its dues"
- Energy spatial planning
 - localizing waste heat, avoiding double infrastructure
- Standardized solutions
 - R&D, degression of costs, economy of scale
- Price signals
 - to the use of fossil fuel, reduce the burden from tax and levy on clean energy

THANK YOU!

Roman Geyer

13th November 2018

Transport, Innovation and Technology

47

HEAT PUMPS IN DISTRICT HEATING AND COOLING SYSTEMS

The **IEA HPT Annex 47** project (FFG No. 853.039) is carried out as part of the IEA research cooperation on behalf of the Austrian Federal Ministry of Transport, Innovation and Technology.

http://heatpumpingtechnologies.org/annex47/